PredDiff: Explanations and interactions from conditional expectations

PredDiff is a model-agnostic, local attribution method that is firmly rooted in probability theory. Its simple intuition is to measure prediction changes while marginalizing features. In this work, we clarify properties of PredDiff and its close connection to Shapley values. We stress important diff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial intelligence 2022-11, Vol.312, p.103774, Article 103774
Hauptverfasser: Blücher, Stefan, Vielhaben, Johanna, Strodthoff, Nils
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 103774
container_title Artificial intelligence
container_volume 312
creator Blücher, Stefan
Vielhaben, Johanna
Strodthoff, Nils
description PredDiff is a model-agnostic, local attribution method that is firmly rooted in probability theory. Its simple intuition is to measure prediction changes while marginalizing features. In this work, we clarify properties of PredDiff and its close connection to Shapley values. We stress important differences between classification and regression, which require a specific treatment within both formalisms. We extend PredDiff by introducing a new, well-founded measure for interaction effects between arbitrary feature subsets. The study of interaction effects represents an inevitable step towards a comprehensive understanding of black-box models and is particularly important for science applications. Equipped with our novel interaction measure, PredDiff is a promising model-agnostic approach for obtaining reliable, numerically inexpensive and theoretically sound attributions.
doi_str_mv 10.1016/j.artint.2022.103774
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2760225527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000437022200114X</els_id><sourcerecordid>2760225527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-e5850d37f3e01faa22a3d7c66b611661e696221e5fe1c9e3f85c0102607f16773</originalsourceid><addsrcrecordid>eNp9UE1LAzEUDKJgrf4DDwuet-Yl3WTXgyC1fkBBD3oOMXmBLO3ummyl_vtmiWdPjxlmhjdDyDXQBVAQt-1Ch9F344JRxhLFpVyekBnUkpWyYXBKZpTSZcklZefkIsY2Qd40MCPr94D20Tt3V6wPw1Z3evR9Fwvd2SIlYtAmEy70u8L0nfUT1tsCDwOaMcsvyZnT24hXf3dOPp_WH6uXcvP2_Lp62JSG13Qssaorarl0HCk4rRnT3EojxJcAEAJQNIIxwMohmAa5qytDgTJBpQMhJZ-Tm5w7hP57j3FUbb8P6ZuomBSpfFWxSbXMKhP6GAM6NQS_0-FXAVXTYKpVeTA1DabyYMl2n22YGvx4DCoaj51B60Nqqmzv_w84Al0MdVs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760225527</pqid></control><display><type>article</type><title>PredDiff: Explanations and interactions from conditional expectations</title><source>Elsevier ScienceDirect Journals</source><creator>Blücher, Stefan ; Vielhaben, Johanna ; Strodthoff, Nils</creator><creatorcontrib>Blücher, Stefan ; Vielhaben, Johanna ; Strodthoff, Nils</creatorcontrib><description>PredDiff is a model-agnostic, local attribution method that is firmly rooted in probability theory. Its simple intuition is to measure prediction changes while marginalizing features. In this work, we clarify properties of PredDiff and its close connection to Shapley values. We stress important differences between classification and regression, which require a specific treatment within both formalisms. We extend PredDiff by introducing a new, well-founded measure for interaction effects between arbitrary feature subsets. The study of interaction effects represents an inevitable step towards a comprehensive understanding of black-box models and is particularly important for science applications. Equipped with our novel interaction measure, PredDiff is a promising model-agnostic approach for obtaining reliable, numerically inexpensive and theoretically sound attributions.</description><identifier>ISSN: 0004-3702</identifier><identifier>EISSN: 1872-7921</identifier><identifier>DOI: 10.1016/j.artint.2022.103774</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Explainable AI ; Feature attribution ; Interactions ; Interpretability ; Mathematical models ; Probability theory ; Shapley values ; Statistical analysis</subject><ispartof>Artificial intelligence, 2022-11, Vol.312, p.103774, Article 103774</ispartof><rights>2022 The Authors</rights><rights>Copyright Elsevier Science Ltd. Nov 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-e5850d37f3e01faa22a3d7c66b611661e696221e5fe1c9e3f85c0102607f16773</citedby><cites>FETCH-LOGICAL-c380t-e5850d37f3e01faa22a3d7c66b611661e696221e5fe1c9e3f85c0102607f16773</cites><orcidid>0000-0002-6330-7996 ; 0000-0003-4447-0162</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S000437022200114X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Blücher, Stefan</creatorcontrib><creatorcontrib>Vielhaben, Johanna</creatorcontrib><creatorcontrib>Strodthoff, Nils</creatorcontrib><title>PredDiff: Explanations and interactions from conditional expectations</title><title>Artificial intelligence</title><description>PredDiff is a model-agnostic, local attribution method that is firmly rooted in probability theory. Its simple intuition is to measure prediction changes while marginalizing features. In this work, we clarify properties of PredDiff and its close connection to Shapley values. We stress important differences between classification and regression, which require a specific treatment within both formalisms. We extend PredDiff by introducing a new, well-founded measure for interaction effects between arbitrary feature subsets. The study of interaction effects represents an inevitable step towards a comprehensive understanding of black-box models and is particularly important for science applications. Equipped with our novel interaction measure, PredDiff is a promising model-agnostic approach for obtaining reliable, numerically inexpensive and theoretically sound attributions.</description><subject>Explainable AI</subject><subject>Feature attribution</subject><subject>Interactions</subject><subject>Interpretability</subject><subject>Mathematical models</subject><subject>Probability theory</subject><subject>Shapley values</subject><subject>Statistical analysis</subject><issn>0004-3702</issn><issn>1872-7921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEUDKJgrf4DDwuet-Yl3WTXgyC1fkBBD3oOMXmBLO3ummyl_vtmiWdPjxlmhjdDyDXQBVAQt-1Ch9F344JRxhLFpVyekBnUkpWyYXBKZpTSZcklZefkIsY2Qd40MCPr94D20Tt3V6wPw1Z3evR9Fwvd2SIlYtAmEy70u8L0nfUT1tsCDwOaMcsvyZnT24hXf3dOPp_WH6uXcvP2_Lp62JSG13Qssaorarl0HCk4rRnT3EojxJcAEAJQNIIxwMohmAa5qytDgTJBpQMhJZ-Tm5w7hP57j3FUbb8P6ZuomBSpfFWxSbXMKhP6GAM6NQS_0-FXAVXTYKpVeTA1DabyYMl2n22YGvx4DCoaj51B60Nqqmzv_w84Al0MdVs</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>Blücher, Stefan</creator><creator>Vielhaben, Johanna</creator><creator>Strodthoff, Nils</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6330-7996</orcidid><orcidid>https://orcid.org/0000-0003-4447-0162</orcidid></search><sort><creationdate>202211</creationdate><title>PredDiff: Explanations and interactions from conditional expectations</title><author>Blücher, Stefan ; Vielhaben, Johanna ; Strodthoff, Nils</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-e5850d37f3e01faa22a3d7c66b611661e696221e5fe1c9e3f85c0102607f16773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Explainable AI</topic><topic>Feature attribution</topic><topic>Interactions</topic><topic>Interpretability</topic><topic>Mathematical models</topic><topic>Probability theory</topic><topic>Shapley values</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blücher, Stefan</creatorcontrib><creatorcontrib>Vielhaben, Johanna</creatorcontrib><creatorcontrib>Strodthoff, Nils</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blücher, Stefan</au><au>Vielhaben, Johanna</au><au>Strodthoff, Nils</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PredDiff: Explanations and interactions from conditional expectations</atitle><jtitle>Artificial intelligence</jtitle><date>2022-11</date><risdate>2022</risdate><volume>312</volume><spage>103774</spage><pages>103774-</pages><artnum>103774</artnum><issn>0004-3702</issn><eissn>1872-7921</eissn><abstract>PredDiff is a model-agnostic, local attribution method that is firmly rooted in probability theory. Its simple intuition is to measure prediction changes while marginalizing features. In this work, we clarify properties of PredDiff and its close connection to Shapley values. We stress important differences between classification and regression, which require a specific treatment within both formalisms. We extend PredDiff by introducing a new, well-founded measure for interaction effects between arbitrary feature subsets. The study of interaction effects represents an inevitable step towards a comprehensive understanding of black-box models and is particularly important for science applications. Equipped with our novel interaction measure, PredDiff is a promising model-agnostic approach for obtaining reliable, numerically inexpensive and theoretically sound attributions.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.artint.2022.103774</doi><orcidid>https://orcid.org/0000-0002-6330-7996</orcidid><orcidid>https://orcid.org/0000-0003-4447-0162</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-3702
ispartof Artificial intelligence, 2022-11, Vol.312, p.103774, Article 103774
issn 0004-3702
1872-7921
language eng
recordid cdi_proquest_journals_2760225527
source Elsevier ScienceDirect Journals
subjects Explainable AI
Feature attribution
Interactions
Interpretability
Mathematical models
Probability theory
Shapley values
Statistical analysis
title PredDiff: Explanations and interactions from conditional expectations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A52%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PredDiff:%20Explanations%20and%20interactions%20from%20conditional%20expectations&rft.jtitle=Artificial%20intelligence&rft.au=Bl%C3%BCcher,%20Stefan&rft.date=2022-11&rft.volume=312&rft.spage=103774&rft.pages=103774-&rft.artnum=103774&rft.issn=0004-3702&rft.eissn=1872-7921&rft_id=info:doi/10.1016/j.artint.2022.103774&rft_dat=%3Cproquest_cross%3E2760225527%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2760225527&rft_id=info:pmid/&rft_els_id=S000437022200114X&rfr_iscdi=true