Quantum-Inspired Tensor Neural Networks for Option Pricing

Recent advances in deep learning have enabled us to address the curse of dimensionality (COD) by solving problems in higher dimensions. A subset of such approaches of addressing the COD has led us to solving high-dimensional PDEs. This has resulted in opening doors to solving a variety of real-world...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-03
Hauptverfasser: Patel, Raj G, Chia-Wei, Hsing, Sahin, Serkan, Palmer, Samuel, Jahromi, Saeed S, Sharma, Shivam, Dominguez, Tomas, Tziritas, Kris, Michel, Christophe, Porte, Vincent, Abid, Mustafa, Aubert, Stephane, Castellani, Pierre, Mugel, Samuel, Orus, Roman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Patel, Raj G
Chia-Wei, Hsing
Sahin, Serkan
Palmer, Samuel
Jahromi, Saeed S
Sharma, Shivam
Dominguez, Tomas
Tziritas, Kris
Michel, Christophe
Porte, Vincent
Abid, Mustafa
Aubert, Stephane
Castellani, Pierre
Mugel, Samuel
Orus, Roman
description Recent advances in deep learning have enabled us to address the curse of dimensionality (COD) by solving problems in higher dimensions. A subset of such approaches of addressing the COD has led us to solving high-dimensional PDEs. This has resulted in opening doors to solving a variety of real-world problems ranging from mathematical finance to stochastic control for industrial applications. Although feasible, these deep learning methods are still constrained by training time and memory. Tackling these shortcomings, Tensor Neural Networks (TNN) demonstrate that they can provide significant parameter savings while attaining the same accuracy as compared to the classical Dense Neural Network (DNN). In addition, we also show how TNN can be trained faster than DNN for the same accuracy. Besides TNN, we also introduce Tensor Network Initializer (TNN Init), a weight initialization scheme that leads to faster convergence with smaller variance for an equivalent parameter count as compared to a DNN. We benchmark TNN and TNN Init by applying them to solve the parabolic PDE associated with the Heston model, which is widely used in financial pricing theory.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2760029691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2760029691</sourcerecordid><originalsourceid>FETCH-proquest_journals_27600296913</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwCixNzCspzdX1zCsuyCxKTVEISc0rzi9S8EstLUrMAVIl5flF2cUKaUAx_4KSzPw8hYCizOTMvHQeBta0xJziVF4ozc2g7OYa4uyhW1CUX1iaWlwSn5VfWpQHlIo3MjcD2mlpZmloTJwqANPwNvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760029691</pqid></control><display><type>article</type><title>Quantum-Inspired Tensor Neural Networks for Option Pricing</title><source>Free E- Journals</source><creator>Patel, Raj G ; Chia-Wei, Hsing ; Sahin, Serkan ; Palmer, Samuel ; Jahromi, Saeed S ; Sharma, Shivam ; Dominguez, Tomas ; Tziritas, Kris ; Michel, Christophe ; Porte, Vincent ; Abid, Mustafa ; Aubert, Stephane ; Castellani, Pierre ; Mugel, Samuel ; Orus, Roman</creator><creatorcontrib>Patel, Raj G ; Chia-Wei, Hsing ; Sahin, Serkan ; Palmer, Samuel ; Jahromi, Saeed S ; Sharma, Shivam ; Dominguez, Tomas ; Tziritas, Kris ; Michel, Christophe ; Porte, Vincent ; Abid, Mustafa ; Aubert, Stephane ; Castellani, Pierre ; Mugel, Samuel ; Orus, Roman</creatorcontrib><description>Recent advances in deep learning have enabled us to address the curse of dimensionality (COD) by solving problems in higher dimensions. A subset of such approaches of addressing the COD has led us to solving high-dimensional PDEs. This has resulted in opening doors to solving a variety of real-world problems ranging from mathematical finance to stochastic control for industrial applications. Although feasible, these deep learning methods are still constrained by training time and memory. Tackling these shortcomings, Tensor Neural Networks (TNN) demonstrate that they can provide significant parameter savings while attaining the same accuracy as compared to the classical Dense Neural Network (DNN). In addition, we also show how TNN can be trained faster than DNN for the same accuracy. Besides TNN, we also introduce Tensor Network Initializer (TNN Init), a weight initialization scheme that leads to faster convergence with smaller variance for an equivalent parameter count as compared to a DNN. We benchmark TNN and TNN Init by applying them to solve the parabolic PDE associated with the Heston model, which is widely used in financial pricing theory.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Accuracy ; Deep learning ; Industrial applications ; Neural networks ; Optimal control ; Parabolic differential equations ; Parameters ; Partial differential equations ; Pricing ; Problem solving ; Stochastic processes ; Tensors</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Patel, Raj G</creatorcontrib><creatorcontrib>Chia-Wei, Hsing</creatorcontrib><creatorcontrib>Sahin, Serkan</creatorcontrib><creatorcontrib>Palmer, Samuel</creatorcontrib><creatorcontrib>Jahromi, Saeed S</creatorcontrib><creatorcontrib>Sharma, Shivam</creatorcontrib><creatorcontrib>Dominguez, Tomas</creatorcontrib><creatorcontrib>Tziritas, Kris</creatorcontrib><creatorcontrib>Michel, Christophe</creatorcontrib><creatorcontrib>Porte, Vincent</creatorcontrib><creatorcontrib>Abid, Mustafa</creatorcontrib><creatorcontrib>Aubert, Stephane</creatorcontrib><creatorcontrib>Castellani, Pierre</creatorcontrib><creatorcontrib>Mugel, Samuel</creatorcontrib><creatorcontrib>Orus, Roman</creatorcontrib><title>Quantum-Inspired Tensor Neural Networks for Option Pricing</title><title>arXiv.org</title><description>Recent advances in deep learning have enabled us to address the curse of dimensionality (COD) by solving problems in higher dimensions. A subset of such approaches of addressing the COD has led us to solving high-dimensional PDEs. This has resulted in opening doors to solving a variety of real-world problems ranging from mathematical finance to stochastic control for industrial applications. Although feasible, these deep learning methods are still constrained by training time and memory. Tackling these shortcomings, Tensor Neural Networks (TNN) demonstrate that they can provide significant parameter savings while attaining the same accuracy as compared to the classical Dense Neural Network (DNN). In addition, we also show how TNN can be trained faster than DNN for the same accuracy. Besides TNN, we also introduce Tensor Network Initializer (TNN Init), a weight initialization scheme that leads to faster convergence with smaller variance for an equivalent parameter count as compared to a DNN. We benchmark TNN and TNN Init by applying them to solve the parabolic PDE associated with the Heston model, which is widely used in financial pricing theory.</description><subject>Accuracy</subject><subject>Deep learning</subject><subject>Industrial applications</subject><subject>Neural networks</subject><subject>Optimal control</subject><subject>Parabolic differential equations</subject><subject>Parameters</subject><subject>Partial differential equations</subject><subject>Pricing</subject><subject>Problem solving</subject><subject>Stochastic processes</subject><subject>Tensors</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwCixNzCspzdX1zCsuyCxKTVEISc0rzi9S8EstLUrMAVIl5flF2cUKaUAx_4KSzPw8hYCizOTMvHQeBta0xJziVF4ozc2g7OYa4uyhW1CUX1iaWlwSn5VfWpQHlIo3MjcD2mlpZmloTJwqANPwNvQ</recordid><startdate>20240310</startdate><enddate>20240310</enddate><creator>Patel, Raj G</creator><creator>Chia-Wei, Hsing</creator><creator>Sahin, Serkan</creator><creator>Palmer, Samuel</creator><creator>Jahromi, Saeed S</creator><creator>Sharma, Shivam</creator><creator>Dominguez, Tomas</creator><creator>Tziritas, Kris</creator><creator>Michel, Christophe</creator><creator>Porte, Vincent</creator><creator>Abid, Mustafa</creator><creator>Aubert, Stephane</creator><creator>Castellani, Pierre</creator><creator>Mugel, Samuel</creator><creator>Orus, Roman</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240310</creationdate><title>Quantum-Inspired Tensor Neural Networks for Option Pricing</title><author>Patel, Raj G ; Chia-Wei, Hsing ; Sahin, Serkan ; Palmer, Samuel ; Jahromi, Saeed S ; Sharma, Shivam ; Dominguez, Tomas ; Tziritas, Kris ; Michel, Christophe ; Porte, Vincent ; Abid, Mustafa ; Aubert, Stephane ; Castellani, Pierre ; Mugel, Samuel ; Orus, Roman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27600296913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Deep learning</topic><topic>Industrial applications</topic><topic>Neural networks</topic><topic>Optimal control</topic><topic>Parabolic differential equations</topic><topic>Parameters</topic><topic>Partial differential equations</topic><topic>Pricing</topic><topic>Problem solving</topic><topic>Stochastic processes</topic><topic>Tensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Patel, Raj G</creatorcontrib><creatorcontrib>Chia-Wei, Hsing</creatorcontrib><creatorcontrib>Sahin, Serkan</creatorcontrib><creatorcontrib>Palmer, Samuel</creatorcontrib><creatorcontrib>Jahromi, Saeed S</creatorcontrib><creatorcontrib>Sharma, Shivam</creatorcontrib><creatorcontrib>Dominguez, Tomas</creatorcontrib><creatorcontrib>Tziritas, Kris</creatorcontrib><creatorcontrib>Michel, Christophe</creatorcontrib><creatorcontrib>Porte, Vincent</creatorcontrib><creatorcontrib>Abid, Mustafa</creatorcontrib><creatorcontrib>Aubert, Stephane</creatorcontrib><creatorcontrib>Castellani, Pierre</creatorcontrib><creatorcontrib>Mugel, Samuel</creatorcontrib><creatorcontrib>Orus, Roman</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patel, Raj G</au><au>Chia-Wei, Hsing</au><au>Sahin, Serkan</au><au>Palmer, Samuel</au><au>Jahromi, Saeed S</au><au>Sharma, Shivam</au><au>Dominguez, Tomas</au><au>Tziritas, Kris</au><au>Michel, Christophe</au><au>Porte, Vincent</au><au>Abid, Mustafa</au><au>Aubert, Stephane</au><au>Castellani, Pierre</au><au>Mugel, Samuel</au><au>Orus, Roman</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Quantum-Inspired Tensor Neural Networks for Option Pricing</atitle><jtitle>arXiv.org</jtitle><date>2024-03-10</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Recent advances in deep learning have enabled us to address the curse of dimensionality (COD) by solving problems in higher dimensions. A subset of such approaches of addressing the COD has led us to solving high-dimensional PDEs. This has resulted in opening doors to solving a variety of real-world problems ranging from mathematical finance to stochastic control for industrial applications. Although feasible, these deep learning methods are still constrained by training time and memory. Tackling these shortcomings, Tensor Neural Networks (TNN) demonstrate that they can provide significant parameter savings while attaining the same accuracy as compared to the classical Dense Neural Network (DNN). In addition, we also show how TNN can be trained faster than DNN for the same accuracy. Besides TNN, we also introduce Tensor Network Initializer (TNN Init), a weight initialization scheme that leads to faster convergence with smaller variance for an equivalent parameter count as compared to a DNN. We benchmark TNN and TNN Init by applying them to solve the parabolic PDE associated with the Heston model, which is widely used in financial pricing theory.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2760029691
source Free E- Journals
subjects Accuracy
Deep learning
Industrial applications
Neural networks
Optimal control
Parabolic differential equations
Parameters
Partial differential equations
Pricing
Problem solving
Stochastic processes
Tensors
title Quantum-Inspired Tensor Neural Networks for Option Pricing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A58%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Quantum-Inspired%20Tensor%20Neural%20Networks%20for%20Option%20Pricing&rft.jtitle=arXiv.org&rft.au=Patel,%20Raj%20G&rft.date=2024-03-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2760029691%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2760029691&rft_id=info:pmid/&rfr_iscdi=true