Novel Spring Mechanism Enables Iterative Energy Accumulation under Force and Deformation Constraints

Springs can provide force at zero net energy cost by recycling negative mechanical work to benefit motor-driven robots or spring-augmented humans. However, humans have limited force and range of motion, and motors have a limited ability to produce force. These limits constrain how much energy a conv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-12
Hauptverfasser: Dempsey, Cole A, Braun, David J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Springs can provide force at zero net energy cost by recycling negative mechanical work to benefit motor-driven robots or spring-augmented humans. However, humans have limited force and range of motion, and motors have a limited ability to produce force. These limits constrain how much energy a conventional spring can store and, consequently, how much assistance a spring can provide. In this paper, we introduce an approach to accumulating negative work in assistive springs over several motion cycles. We show that, by utilizing a novel floating spring mechanism, the weight of a human or robot can be used to iteratively increase spring compression, irrespective of the potential energy stored by the spring. Decoupling the force required to compress a spring from the energy stored by a spring advances prior works, and could enable spring-driven robots and humans to perform physically demanding tasks without the use of large actuators.
ISSN:2331-8422