UGMINE: utility-based graph mining
Frequent pattern mining extracts most frequent patterns from databases. These frequency-based frameworks have limitations in representing users’ interest in many cases. In business decision-making, not all patterns are of the same importance. To solve this problem, utility has been incorporated in t...
Gespeichert in:
Veröffentlicht in: | Applied intelligence (Dordrecht, Netherlands) Netherlands), 2023, Vol.53 (1), p.49-68 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 68 |
---|---|
container_issue | 1 |
container_start_page | 49 |
container_title | Applied intelligence (Dordrecht, Netherlands) |
container_volume | 53 |
creator | Alam, Md. Tanvir Roy, Amit Ahmed, Chowdhury Farhan Islam, Md. Ashraful Leung, Carson K. |
description | Frequent pattern mining extracts most frequent patterns from databases. These frequency-based frameworks have limitations in representing users’ interest in many cases. In business decision-making, not all patterns are of the same importance. To solve this problem, utility has been incorporated in transactional and sequential databases. A graph is a relatively complex but highly useful data structure. Although frequency-based graph mining has many real-life applications, it has limitations similar to other frequency-based frameworks. To the best of our knowledge, there is no complete framework developed for mining utility-based patterns from graphs. In this work, we propose a complete framework for utility-based graph pattern mining. A complete algorithm named UGMINE is presented for high utility subgraph mining. We introduce a pruning technique named RMU pruning for effective pruning of the candidate pattern search space that grows exponentially. We conduct experiments on various datasets to analyze the performance of the algorithm. Our experimental results show the effectiveness of UGMINE to extract high utility subgraph patterns. |
doi_str_mv | 10.1007/s10489-022-03385-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2760026992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2760026992</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-130e54532e35ab29edad5b780f1d702e223595fa1e430d17e42157ccd83bc2493</originalsourceid><addsrcrecordid>eNp9kLFOwzAURS0EEqHwA0wVzIbnZzuO2VDVlkoFFiqxWU7ilFRtEuxk6N9jCBIb01vOvffpEHLN4I4BqPvAQGSaAiIFzjNJsxOSMKk4VUKrU5KARkHTVL-fk4sQdgARA5aQm83yefUyf5gOfb2v-yPNbXDldOtt9zE91E3dbC_JWWX3wV393gnZLOZvsye6fl2uZo9rWnCme8o4OCkkR8elzVG70pYyVxlUrFSADpFLLSvLnOBQMuUExgeLosx4XqDQfEJux97Ot5-DC73ZtYNv4qRBlQJgqjVGCkeq8G0I3lWm8_XB-qNhYL5dmNGFiS7MjwuTxRAfQyHCzdb5v-p_Ul9XEl7D</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760026992</pqid></control><display><type>article</type><title>UGMINE: utility-based graph mining</title><source>SpringerLink Journals - AutoHoldings</source><creator>Alam, Md. Tanvir ; Roy, Amit ; Ahmed, Chowdhury Farhan ; Islam, Md. Ashraful ; Leung, Carson K.</creator><creatorcontrib>Alam, Md. Tanvir ; Roy, Amit ; Ahmed, Chowdhury Farhan ; Islam, Md. Ashraful ; Leung, Carson K.</creatorcontrib><description>Frequent pattern mining extracts most frequent patterns from databases. These frequency-based frameworks have limitations in representing users’ interest in many cases. In business decision-making, not all patterns are of the same importance. To solve this problem, utility has been incorporated in transactional and sequential databases. A graph is a relatively complex but highly useful data structure. Although frequency-based graph mining has many real-life applications, it has limitations similar to other frequency-based frameworks. To the best of our knowledge, there is no complete framework developed for mining utility-based patterns from graphs. In this work, we propose a complete framework for utility-based graph pattern mining. A complete algorithm named UGMINE is presented for high utility subgraph mining. We introduce a pruning technique named RMU pruning for effective pruning of the candidate pattern search space that grows exponentially. We conduct experiments on various datasets to analyze the performance of the algorithm. Our experimental results show the effectiveness of UGMINE to extract high utility subgraph patterns.</description><identifier>ISSN: 0924-669X</identifier><identifier>EISSN: 1573-7497</identifier><identifier>DOI: 10.1007/s10489-022-03385-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Artificial Intelligence ; Candidates ; Computer Science ; Data mining ; Data structures ; Decision making ; Graph theory ; Graphs ; Machines ; Manufacturing ; Mechanical Engineering ; Pattern analysis ; Pattern search ; Processes ; Utility functions</subject><ispartof>Applied intelligence (Dordrecht, Netherlands), 2023, Vol.53 (1), p.49-68</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-130e54532e35ab29edad5b780f1d702e223595fa1e430d17e42157ccd83bc2493</citedby><cites>FETCH-LOGICAL-c319t-130e54532e35ab29edad5b780f1d702e223595fa1e430d17e42157ccd83bc2493</cites><orcidid>0000-0002-7541-9127 ; 0000-0001-9543-4503 ; 0000-0002-6101-4591</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10489-022-03385-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10489-022-03385-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Alam, Md. Tanvir</creatorcontrib><creatorcontrib>Roy, Amit</creatorcontrib><creatorcontrib>Ahmed, Chowdhury Farhan</creatorcontrib><creatorcontrib>Islam, Md. Ashraful</creatorcontrib><creatorcontrib>Leung, Carson K.</creatorcontrib><title>UGMINE: utility-based graph mining</title><title>Applied intelligence (Dordrecht, Netherlands)</title><addtitle>Appl Intell</addtitle><description>Frequent pattern mining extracts most frequent patterns from databases. These frequency-based frameworks have limitations in representing users’ interest in many cases. In business decision-making, not all patterns are of the same importance. To solve this problem, utility has been incorporated in transactional and sequential databases. A graph is a relatively complex but highly useful data structure. Although frequency-based graph mining has many real-life applications, it has limitations similar to other frequency-based frameworks. To the best of our knowledge, there is no complete framework developed for mining utility-based patterns from graphs. In this work, we propose a complete framework for utility-based graph pattern mining. A complete algorithm named UGMINE is presented for high utility subgraph mining. We introduce a pruning technique named RMU pruning for effective pruning of the candidate pattern search space that grows exponentially. We conduct experiments on various datasets to analyze the performance of the algorithm. Our experimental results show the effectiveness of UGMINE to extract high utility subgraph patterns.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Candidates</subject><subject>Computer Science</subject><subject>Data mining</subject><subject>Data structures</subject><subject>Decision making</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Pattern analysis</subject><subject>Pattern search</subject><subject>Processes</subject><subject>Utility functions</subject><issn>0924-669X</issn><issn>1573-7497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kLFOwzAURS0EEqHwA0wVzIbnZzuO2VDVlkoFFiqxWU7ilFRtEuxk6N9jCBIb01vOvffpEHLN4I4BqPvAQGSaAiIFzjNJsxOSMKk4VUKrU5KARkHTVL-fk4sQdgARA5aQm83yefUyf5gOfb2v-yPNbXDldOtt9zE91E3dbC_JWWX3wV393gnZLOZvsye6fl2uZo9rWnCme8o4OCkkR8elzVG70pYyVxlUrFSADpFLLSvLnOBQMuUExgeLosx4XqDQfEJux97Ot5-DC73ZtYNv4qRBlQJgqjVGCkeq8G0I3lWm8_XB-qNhYL5dmNGFiS7MjwuTxRAfQyHCzdb5v-p_Ul9XEl7D</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Alam, Md. Tanvir</creator><creator>Roy, Amit</creator><creator>Ahmed, Chowdhury Farhan</creator><creator>Islam, Md. Ashraful</creator><creator>Leung, Carson K.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-7541-9127</orcidid><orcidid>https://orcid.org/0000-0001-9543-4503</orcidid><orcidid>https://orcid.org/0000-0002-6101-4591</orcidid></search><sort><creationdate>2023</creationdate><title>UGMINE: utility-based graph mining</title><author>Alam, Md. Tanvir ; Roy, Amit ; Ahmed, Chowdhury Farhan ; Islam, Md. Ashraful ; Leung, Carson K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-130e54532e35ab29edad5b780f1d702e223595fa1e430d17e42157ccd83bc2493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Candidates</topic><topic>Computer Science</topic><topic>Data mining</topic><topic>Data structures</topic><topic>Decision making</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Pattern analysis</topic><topic>Pattern search</topic><topic>Processes</topic><topic>Utility functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alam, Md. Tanvir</creatorcontrib><creatorcontrib>Roy, Amit</creatorcontrib><creatorcontrib>Ahmed, Chowdhury Farhan</creatorcontrib><creatorcontrib>Islam, Md. Ashraful</creatorcontrib><creatorcontrib>Leung, Carson K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alam, Md. Tanvir</au><au>Roy, Amit</au><au>Ahmed, Chowdhury Farhan</au><au>Islam, Md. Ashraful</au><au>Leung, Carson K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>UGMINE: utility-based graph mining</atitle><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle><stitle>Appl Intell</stitle><date>2023</date><risdate>2023</risdate><volume>53</volume><issue>1</issue><spage>49</spage><epage>68</epage><pages>49-68</pages><issn>0924-669X</issn><eissn>1573-7497</eissn><abstract>Frequent pattern mining extracts most frequent patterns from databases. These frequency-based frameworks have limitations in representing users’ interest in many cases. In business decision-making, not all patterns are of the same importance. To solve this problem, utility has been incorporated in transactional and sequential databases. A graph is a relatively complex but highly useful data structure. Although frequency-based graph mining has many real-life applications, it has limitations similar to other frequency-based frameworks. To the best of our knowledge, there is no complete framework developed for mining utility-based patterns from graphs. In this work, we propose a complete framework for utility-based graph pattern mining. A complete algorithm named UGMINE is presented for high utility subgraph mining. We introduce a pruning technique named RMU pruning for effective pruning of the candidate pattern search space that grows exponentially. We conduct experiments on various datasets to analyze the performance of the algorithm. Our experimental results show the effectiveness of UGMINE to extract high utility subgraph patterns.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10489-022-03385-8</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-7541-9127</orcidid><orcidid>https://orcid.org/0000-0001-9543-4503</orcidid><orcidid>https://orcid.org/0000-0002-6101-4591</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-669X |
ispartof | Applied intelligence (Dordrecht, Netherlands), 2023, Vol.53 (1), p.49-68 |
issn | 0924-669X 1573-7497 |
language | eng |
recordid | cdi_proquest_journals_2760026992 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Artificial Intelligence Candidates Computer Science Data mining Data structures Decision making Graph theory Graphs Machines Manufacturing Mechanical Engineering Pattern analysis Pattern search Processes Utility functions |
title | UGMINE: utility-based graph mining |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T03%3A24%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=UGMINE:%20utility-based%20graph%20mining&rft.jtitle=Applied%20intelligence%20(Dordrecht,%20Netherlands)&rft.au=Alam,%20Md.%20Tanvir&rft.date=2023&rft.volume=53&rft.issue=1&rft.spage=49&rft.epage=68&rft.pages=49-68&rft.issn=0924-669X&rft.eissn=1573-7497&rft_id=info:doi/10.1007/s10489-022-03385-8&rft_dat=%3Cproquest_cross%3E2760026992%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2760026992&rft_id=info:pmid/&rfr_iscdi=true |