Petrogenetic studies of Permian pegmatites in the Chinese Altay: Implications for a two‐stage post‐collisional magmatism model

Understanding the petrogenesis of rare‐metal pegmatites is important for understanding ore‐forming processes and their tectonic settings. In this study, we performed zircon U–Pb geochronological and Hf–O isotopic analyses of the Xiaokalasu, Dakalasu, and Yelaman pegmatites in the Chinese Altay oroge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geological journal (Chichester, England) England), 2023-01, Vol.58 (1), p.410-427
Hauptverfasser: Wang, Meng‐Tao, Zhang, Hui, Zhang, Xin, Tang, Yong, Lv, Zheng‐Hang, Chen, Jian‐Zheng, An, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 427
container_issue 1
container_start_page 410
container_title Geological journal (Chichester, England)
container_volume 58
creator Wang, Meng‐Tao
Zhang, Hui
Zhang, Xin
Tang, Yong
Lv, Zheng‐Hang
Chen, Jian‐Zheng
An, Yi
description Understanding the petrogenesis of rare‐metal pegmatites is important for understanding ore‐forming processes and their tectonic settings. In this study, we performed zircon U–Pb geochronological and Hf–O isotopic analyses of the Xiaokalasu, Dakalasu, and Yelaman pegmatites in the Chinese Altay orogen. These pegmatites have low εHf(t) values (−0.6 ~ +4.3), two‐stage model ages of 989 ~ 1,293 Ma, and high δ18O values (+6.52 ~ +11.31), indicating that they may have been derived from the anatexis of mature sedimentary rocks in the deep crust, with a small amount of mantle‐derived or juvenile material. Geochronological and Hf–O isotopic data for granitic intrusions in the Chinese Altay Mountains indicate that the εHf(t) values decreased from the Permian to the Triassic, which implies that two‐stage post‐collisional magmatism occurred in this region. During the Permian, the thin lower crust was cold; thus, magmatism likely originated in the deep crust close to the Moho surface and involved intense mantle–crust interactions. During the Triassic, asthenospheric upwelling provided heat to the lower crust, which increased the geothermal gradient and led to the anatexis of shallow crustal material. Two‐stage post‐collisional magmatism model. (1) At the beginning of asthenosphere upwelling, the thinned lower crust would have been in a low‐temperature condition, and thus the magmatism might be originated at deep crust and close to the Moho surface. Because of the intensive mantle–crust interactions, more mantle materials have contributed into the initial magma. (2) The upwelling of asthenosphere kept providing heat into the lower crust, and, as a result, the geothermal gradient increased. These processes make the partial melting of shallower crust materials possible. If implemented, there could generate felsic melts without mantle material contribution.
doi_str_mv 10.1002/gj.4601
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2760022227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2760022227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2891-61341c57c0eb66255511d5237fe5bd62cab35a2deb7ad0213773163b4ee7f33b3</originalsourceid><addsrcrecordid>eNp10M1KAzEQB_AgCtYqvkLAgwfZmo_NxnqTorVSsAc9L9ns7DZld7MmKaU38Ql8Rp_EtPXqXGYSfgzDH6FLSkaUEHZbr0ZpRugRGlAyHieU8PQYDQiRLM6CnKIz71eEUEpSOkBfCwjO1tBBMBr7sC4NeGwrvADXGtXhHupWBRPir-lwWAKeLE0HHvBDE9T2Hs_avjE6Ett5XFmHFQ4b-_P57YOqAffWh_jQtmmMj0Y1uFX7lb7FrS2hOUcnlWo8XPz1IXp_enybPCfz1-ls8jBPNLsb0ySjPKVaSE2gyDImhKC0FIzLCkRRZkyrggvFSiikKgmjXEpOM16kALLivOBDdHXY2zv7sQYf8pVdu3iQz5nMYnSxZFTXB6Wd9d5BlffOtMptc0ryXcB5vcp3AUd5c5Ab08D2P5ZPX_b6Fzk_fk0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760022227</pqid></control><display><type>article</type><title>Petrogenetic studies of Permian pegmatites in the Chinese Altay: Implications for a two‐stage post‐collisional magmatism model</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Meng‐Tao ; Zhang, Hui ; Zhang, Xin ; Tang, Yong ; Lv, Zheng‐Hang ; Chen, Jian‐Zheng ; An, Yi</creator><creatorcontrib>Wang, Meng‐Tao ; Zhang, Hui ; Zhang, Xin ; Tang, Yong ; Lv, Zheng‐Hang ; Chen, Jian‐Zheng ; An, Yi</creatorcontrib><description>Understanding the petrogenesis of rare‐metal pegmatites is important for understanding ore‐forming processes and their tectonic settings. In this study, we performed zircon U–Pb geochronological and Hf–O isotopic analyses of the Xiaokalasu, Dakalasu, and Yelaman pegmatites in the Chinese Altay orogen. These pegmatites have low εHf(t) values (−0.6 ~ +4.3), two‐stage model ages of 989 ~ 1,293 Ma, and high δ18O values (+6.52 ~ +11.31), indicating that they may have been derived from the anatexis of mature sedimentary rocks in the deep crust, with a small amount of mantle‐derived or juvenile material. Geochronological and Hf–O isotopic data for granitic intrusions in the Chinese Altay Mountains indicate that the εHf(t) values decreased from the Permian to the Triassic, which implies that two‐stage post‐collisional magmatism occurred in this region. During the Permian, the thin lower crust was cold; thus, magmatism likely originated in the deep crust close to the Moho surface and involved intense mantle–crust interactions. During the Triassic, asthenospheric upwelling provided heat to the lower crust, which increased the geothermal gradient and led to the anatexis of shallow crustal material. Two‐stage post‐collisional magmatism model. (1) At the beginning of asthenosphere upwelling, the thinned lower crust would have been in a low‐temperature condition, and thus the magmatism might be originated at deep crust and close to the Moho surface. Because of the intensive mantle–crust interactions, more mantle materials have contributed into the initial magma. (2) The upwelling of asthenosphere kept providing heat into the lower crust, and, as a result, the geothermal gradient increased. These processes make the partial melting of shallower crust materials possible. If implemented, there could generate felsic melts without mantle material contribution.</description><identifier>ISSN: 0072-1050</identifier><identifier>EISSN: 1099-1034</identifier><identifier>DOI: 10.1002/gj.4601</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Asthenosphere ; Geochronology ; Geothermal gradient ; Heavy metals ; Isotopes ; Juveniles ; Magma ; Moho ; Mountains ; Ocean circulation ; Orogeny ; Permian ; Permian pegmatite ; Petrogenesis ; Sedimentary rocks ; Tectonics ; Triassic ; Upwelling ; Zircon ; zircon Hf–O isotopes ; zircon U–Pb dating</subject><ispartof>Geological journal (Chichester, England), 2023-01, Vol.58 (1), p.410-427</ispartof><rights>2022 John Wiley &amp; Sons Ltd.</rights><rights>2023 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2891-61341c57c0eb66255511d5237fe5bd62cab35a2deb7ad0213773163b4ee7f33b3</citedby><cites>FETCH-LOGICAL-c2891-61341c57c0eb66255511d5237fe5bd62cab35a2deb7ad0213773163b4ee7f33b3</cites><orcidid>0000-0002-2421-0841</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fgj.4601$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fgj.4601$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Wang, Meng‐Tao</creatorcontrib><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Tang, Yong</creatorcontrib><creatorcontrib>Lv, Zheng‐Hang</creatorcontrib><creatorcontrib>Chen, Jian‐Zheng</creatorcontrib><creatorcontrib>An, Yi</creatorcontrib><title>Petrogenetic studies of Permian pegmatites in the Chinese Altay: Implications for a two‐stage post‐collisional magmatism model</title><title>Geological journal (Chichester, England)</title><description>Understanding the petrogenesis of rare‐metal pegmatites is important for understanding ore‐forming processes and their tectonic settings. In this study, we performed zircon U–Pb geochronological and Hf–O isotopic analyses of the Xiaokalasu, Dakalasu, and Yelaman pegmatites in the Chinese Altay orogen. These pegmatites have low εHf(t) values (−0.6 ~ +4.3), two‐stage model ages of 989 ~ 1,293 Ma, and high δ18O values (+6.52 ~ +11.31), indicating that they may have been derived from the anatexis of mature sedimentary rocks in the deep crust, with a small amount of mantle‐derived or juvenile material. Geochronological and Hf–O isotopic data for granitic intrusions in the Chinese Altay Mountains indicate that the εHf(t) values decreased from the Permian to the Triassic, which implies that two‐stage post‐collisional magmatism occurred in this region. During the Permian, the thin lower crust was cold; thus, magmatism likely originated in the deep crust close to the Moho surface and involved intense mantle–crust interactions. During the Triassic, asthenospheric upwelling provided heat to the lower crust, which increased the geothermal gradient and led to the anatexis of shallow crustal material. Two‐stage post‐collisional magmatism model. (1) At the beginning of asthenosphere upwelling, the thinned lower crust would have been in a low‐temperature condition, and thus the magmatism might be originated at deep crust and close to the Moho surface. Because of the intensive mantle–crust interactions, more mantle materials have contributed into the initial magma. (2) The upwelling of asthenosphere kept providing heat into the lower crust, and, as a result, the geothermal gradient increased. These processes make the partial melting of shallower crust materials possible. If implemented, there could generate felsic melts without mantle material contribution.</description><subject>Asthenosphere</subject><subject>Geochronology</subject><subject>Geothermal gradient</subject><subject>Heavy metals</subject><subject>Isotopes</subject><subject>Juveniles</subject><subject>Magma</subject><subject>Moho</subject><subject>Mountains</subject><subject>Ocean circulation</subject><subject>Orogeny</subject><subject>Permian</subject><subject>Permian pegmatite</subject><subject>Petrogenesis</subject><subject>Sedimentary rocks</subject><subject>Tectonics</subject><subject>Triassic</subject><subject>Upwelling</subject><subject>Zircon</subject><subject>zircon Hf–O isotopes</subject><subject>zircon U–Pb dating</subject><issn>0072-1050</issn><issn>1099-1034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp10M1KAzEQB_AgCtYqvkLAgwfZmo_NxnqTorVSsAc9L9ns7DZld7MmKaU38Ql8Rp_EtPXqXGYSfgzDH6FLSkaUEHZbr0ZpRugRGlAyHieU8PQYDQiRLM6CnKIz71eEUEpSOkBfCwjO1tBBMBr7sC4NeGwrvADXGtXhHupWBRPir-lwWAKeLE0HHvBDE9T2Hs_avjE6Ett5XFmHFQ4b-_P57YOqAffWh_jQtmmMj0Y1uFX7lb7FrS2hOUcnlWo8XPz1IXp_enybPCfz1-ls8jBPNLsb0ySjPKVaSE2gyDImhKC0FIzLCkRRZkyrggvFSiikKgmjXEpOM16kALLivOBDdHXY2zv7sQYf8pVdu3iQz5nMYnSxZFTXB6Wd9d5BlffOtMptc0ryXcB5vcp3AUd5c5Ab08D2P5ZPX_b6Fzk_fk0</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Wang, Meng‐Tao</creator><creator>Zhang, Hui</creator><creator>Zhang, Xin</creator><creator>Tang, Yong</creator><creator>Lv, Zheng‐Hang</creator><creator>Chen, Jian‐Zheng</creator><creator>An, Yi</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-2421-0841</orcidid></search><sort><creationdate>202301</creationdate><title>Petrogenetic studies of Permian pegmatites in the Chinese Altay: Implications for a two‐stage post‐collisional magmatism model</title><author>Wang, Meng‐Tao ; Zhang, Hui ; Zhang, Xin ; Tang, Yong ; Lv, Zheng‐Hang ; Chen, Jian‐Zheng ; An, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2891-61341c57c0eb66255511d5237fe5bd62cab35a2deb7ad0213773163b4ee7f33b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Asthenosphere</topic><topic>Geochronology</topic><topic>Geothermal gradient</topic><topic>Heavy metals</topic><topic>Isotopes</topic><topic>Juveniles</topic><topic>Magma</topic><topic>Moho</topic><topic>Mountains</topic><topic>Ocean circulation</topic><topic>Orogeny</topic><topic>Permian</topic><topic>Permian pegmatite</topic><topic>Petrogenesis</topic><topic>Sedimentary rocks</topic><topic>Tectonics</topic><topic>Triassic</topic><topic>Upwelling</topic><topic>Zircon</topic><topic>zircon Hf–O isotopes</topic><topic>zircon U–Pb dating</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Meng‐Tao</creatorcontrib><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Tang, Yong</creatorcontrib><creatorcontrib>Lv, Zheng‐Hang</creatorcontrib><creatorcontrib>Chen, Jian‐Zheng</creatorcontrib><creatorcontrib>An, Yi</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Geological journal (Chichester, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Meng‐Tao</au><au>Zhang, Hui</au><au>Zhang, Xin</au><au>Tang, Yong</au><au>Lv, Zheng‐Hang</au><au>Chen, Jian‐Zheng</au><au>An, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Petrogenetic studies of Permian pegmatites in the Chinese Altay: Implications for a two‐stage post‐collisional magmatism model</atitle><jtitle>Geological journal (Chichester, England)</jtitle><date>2023-01</date><risdate>2023</risdate><volume>58</volume><issue>1</issue><spage>410</spage><epage>427</epage><pages>410-427</pages><issn>0072-1050</issn><eissn>1099-1034</eissn><abstract>Understanding the petrogenesis of rare‐metal pegmatites is important for understanding ore‐forming processes and their tectonic settings. In this study, we performed zircon U–Pb geochronological and Hf–O isotopic analyses of the Xiaokalasu, Dakalasu, and Yelaman pegmatites in the Chinese Altay orogen. These pegmatites have low εHf(t) values (−0.6 ~ +4.3), two‐stage model ages of 989 ~ 1,293 Ma, and high δ18O values (+6.52 ~ +11.31), indicating that they may have been derived from the anatexis of mature sedimentary rocks in the deep crust, with a small amount of mantle‐derived or juvenile material. Geochronological and Hf–O isotopic data for granitic intrusions in the Chinese Altay Mountains indicate that the εHf(t) values decreased from the Permian to the Triassic, which implies that two‐stage post‐collisional magmatism occurred in this region. During the Permian, the thin lower crust was cold; thus, magmatism likely originated in the deep crust close to the Moho surface and involved intense mantle–crust interactions. During the Triassic, asthenospheric upwelling provided heat to the lower crust, which increased the geothermal gradient and led to the anatexis of shallow crustal material. Two‐stage post‐collisional magmatism model. (1) At the beginning of asthenosphere upwelling, the thinned lower crust would have been in a low‐temperature condition, and thus the magmatism might be originated at deep crust and close to the Moho surface. Because of the intensive mantle–crust interactions, more mantle materials have contributed into the initial magma. (2) The upwelling of asthenosphere kept providing heat into the lower crust, and, as a result, the geothermal gradient increased. These processes make the partial melting of shallower crust materials possible. If implemented, there could generate felsic melts without mantle material contribution.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/gj.4601</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-2421-0841</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0072-1050
ispartof Geological journal (Chichester, England), 2023-01, Vol.58 (1), p.410-427
issn 0072-1050
1099-1034
language eng
recordid cdi_proquest_journals_2760022227
source Wiley Online Library Journals Frontfile Complete
subjects Asthenosphere
Geochronology
Geothermal gradient
Heavy metals
Isotopes
Juveniles
Magma
Moho
Mountains
Ocean circulation
Orogeny
Permian
Permian pegmatite
Petrogenesis
Sedimentary rocks
Tectonics
Triassic
Upwelling
Zircon
zircon Hf–O isotopes
zircon U–Pb dating
title Petrogenetic studies of Permian pegmatites in the Chinese Altay: Implications for a two‐stage post‐collisional magmatism model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T08%3A42%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Petrogenetic%20studies%20of%20Permian%20pegmatites%20in%20the%20Chinese%20Altay:%20Implications%20for%20a%20two%E2%80%90stage%20post%E2%80%90collisional%20magmatism%20model&rft.jtitle=Geological%20journal%20(Chichester,%20England)&rft.au=Wang,%20Meng%E2%80%90Tao&rft.date=2023-01&rft.volume=58&rft.issue=1&rft.spage=410&rft.epage=427&rft.pages=410-427&rft.issn=0072-1050&rft.eissn=1099-1034&rft_id=info:doi/10.1002/gj.4601&rft_dat=%3Cproquest_cross%3E2760022227%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2760022227&rft_id=info:pmid/&rfr_iscdi=true