ANALYSIS AND PREDICTION OF DATASET CATEGORIES FOR DEEP LEARNING IN FAUX NEWS DETECTION: A SYSTEMATIC REVIEW

As time flows, the quantity of information, in particular textual content information will increase exponentially. Along with the information, our knowhow of Machine Learning additionally will increase and the computing electricity permits us to teach very complicated and big fashions faster. Fake i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced research in computer science 2022-12, Vol.13 (6), p.45-48
1. Verfasser: Deshmukh, Vaishnavi J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 48
container_issue 6
container_start_page 45
container_title International journal of advanced research in computer science
container_volume 13
creator Deshmukh, Vaishnavi J.
description As time flows, the quantity of information, in particular textual content information will increase exponentially. Along with the information, our knowhow of Machine Learning additionally will increase and the computing electricity permits us to teach very complicated and big fashions faster. Fake information has been accumulating loads of interest international recently. The results may be political, economic, organizational, or maybe personal. This paper discusses the oneofakind evaluation of datasets and classifiers technique that's powerful for implementation of Deep gaining knowledge of and system gaining knowledge of that allows you to remedy the problem. Secondary cause of this evaluation on this paper is a faux information detection version that uses ngram evaluation and system gaining knowledge of strategies. We look at and evaluate oneofakind functions extraction strategies and 3 oneofakind system category datasets offer a mechanism for researchers to cope with excessive effect questions that might in any other case be prohibitively steeplypriced and timeingesting to study.
doi_str_mv 10.26483/ijarcs.v13i6.6944
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2759762791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2759762791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c711-75ffb0b49e9837283352917788905baa696fd3e855b8ad5a8a184f18f02eeb943</originalsourceid><addsrcrecordid>eNpNkN1LwzAUxYMoOOb-AZ8CPncmTfPlW2jTGajtaKNzTyHdWtj82Gyd4H9v3XzwvNwD59x74QfANUbTkEWC3G62vlv10y9MNmzKZBSdgRGSnAWUSX7-z1-CSd9v0SAiJYvQCLyoXGXLylRQ5QmclzoxsTVFDosUJsqqSlsYK6tnRWl0BdOihInWc5hpVeYmn0GTw1Q9PsNcL6ohsvq4fgcVrJaV1Q_KmhiW-snoxRW4aP1r30z-5hjYVNv4PsiKmYlVFqw4xgGnbVujOpKNFISHghAaSsy5EBLR2nsmWbsmjaC0Fn5NvfBYRC0WLQqbppYRGYOb09l9t_s4NP2n2-4O3fvw0YWcDihCLvHQCk-tVbfr-65p3b7bvPnu22HkjljdCas7YnW_WMkPVjxi-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2759762791</pqid></control><display><type>article</type><title>ANALYSIS AND PREDICTION OF DATASET CATEGORIES FOR DEEP LEARNING IN FAUX NEWS DETECTION: A SYSTEMATIC REVIEW</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Deshmukh, Vaishnavi J.</creator><creatorcontrib>Deshmukh, Vaishnavi J. ; Research Scholar Department of Computer Science &amp; Engineering Kalinga University, Raipur, India</creatorcontrib><description>As time flows, the quantity of information, in particular textual content information will increase exponentially. Along with the information, our knowhow of Machine Learning additionally will increase and the computing electricity permits us to teach very complicated and big fashions faster. Fake information has been accumulating loads of interest international recently. The results may be political, economic, organizational, or maybe personal. This paper discusses the oneofakind evaluation of datasets and classifiers technique that's powerful for implementation of Deep gaining knowledge of and system gaining knowledge of that allows you to remedy the problem. Secondary cause of this evaluation on this paper is a faux information detection version that uses ngram evaluation and system gaining knowledge of strategies. We look at and evaluate oneofakind functions extraction strategies and 3 oneofakind system category datasets offer a mechanism for researchers to cope with excessive effect questions that might in any other case be prohibitively steeplypriced and timeingesting to study.</description><identifier>ISSN: 0976-5697</identifier><identifier>EISSN: 0976-5697</identifier><identifier>DOI: 10.26483/ijarcs.v13i6.6944</identifier><language>eng</language><publisher>Udaipur: International Journal of Advanced Research in Computer Science</publisher><subject>Algorithms ; Classification ; Computer science ; Datasets ; Deep learning ; Evaluation ; Information sources ; Machine learning ; Multimedia ; Product reviews ; Social networks ; Systematic review</subject><ispartof>International journal of advanced research in computer science, 2022-12, Vol.13 (6), p.45-48</ispartof><rights>Nov 2022. This work is published under https://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Deshmukh, Vaishnavi J.</creatorcontrib><creatorcontrib>Research Scholar Department of Computer Science &amp; Engineering Kalinga University, Raipur, India</creatorcontrib><title>ANALYSIS AND PREDICTION OF DATASET CATEGORIES FOR DEEP LEARNING IN FAUX NEWS DETECTION: A SYSTEMATIC REVIEW</title><title>International journal of advanced research in computer science</title><description>As time flows, the quantity of information, in particular textual content information will increase exponentially. Along with the information, our knowhow of Machine Learning additionally will increase and the computing electricity permits us to teach very complicated and big fashions faster. Fake information has been accumulating loads of interest international recently. The results may be political, economic, organizational, or maybe personal. This paper discusses the oneofakind evaluation of datasets and classifiers technique that's powerful for implementation of Deep gaining knowledge of and system gaining knowledge of that allows you to remedy the problem. Secondary cause of this evaluation on this paper is a faux information detection version that uses ngram evaluation and system gaining knowledge of strategies. We look at and evaluate oneofakind functions extraction strategies and 3 oneofakind system category datasets offer a mechanism for researchers to cope with excessive effect questions that might in any other case be prohibitively steeplypriced and timeingesting to study.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Computer science</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Evaluation</subject><subject>Information sources</subject><subject>Machine learning</subject><subject>Multimedia</subject><subject>Product reviews</subject><subject>Social networks</subject><subject>Systematic review</subject><issn>0976-5697</issn><issn>0976-5697</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkN1LwzAUxYMoOOb-AZ8CPncmTfPlW2jTGajtaKNzTyHdWtj82Gyd4H9v3XzwvNwD59x74QfANUbTkEWC3G62vlv10y9MNmzKZBSdgRGSnAWUSX7-z1-CSd9v0SAiJYvQCLyoXGXLylRQ5QmclzoxsTVFDosUJsqqSlsYK6tnRWl0BdOihInWc5hpVeYmn0GTw1Q9PsNcL6ohsvq4fgcVrJaV1Q_KmhiW-snoxRW4aP1r30z-5hjYVNv4PsiKmYlVFqw4xgGnbVujOpKNFISHghAaSsy5EBLR2nsmWbsmjaC0Fn5NvfBYRC0WLQqbppYRGYOb09l9t_s4NP2n2-4O3fvw0YWcDihCLvHQCk-tVbfr-65p3b7bvPnu22HkjljdCas7YnW_WMkPVjxi-w</recordid><startdate>20221220</startdate><enddate>20221220</enddate><creator>Deshmukh, Vaishnavi J.</creator><general>International Journal of Advanced Research in Computer Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20221220</creationdate><title>ANALYSIS AND PREDICTION OF DATASET CATEGORIES FOR DEEP LEARNING IN FAUX NEWS DETECTION: A SYSTEMATIC REVIEW</title><author>Deshmukh, Vaishnavi J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c711-75ffb0b49e9837283352917788905baa696fd3e855b8ad5a8a184f18f02eeb943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Computer science</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Evaluation</topic><topic>Information sources</topic><topic>Machine learning</topic><topic>Multimedia</topic><topic>Product reviews</topic><topic>Social networks</topic><topic>Systematic review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deshmukh, Vaishnavi J.</creatorcontrib><creatorcontrib>Research Scholar Department of Computer Science &amp; Engineering Kalinga University, Raipur, India</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of advanced research in computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deshmukh, Vaishnavi J.</au><aucorp>Research Scholar Department of Computer Science &amp; Engineering Kalinga University, Raipur, India</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ANALYSIS AND PREDICTION OF DATASET CATEGORIES FOR DEEP LEARNING IN FAUX NEWS DETECTION: A SYSTEMATIC REVIEW</atitle><jtitle>International journal of advanced research in computer science</jtitle><date>2022-12-20</date><risdate>2022</risdate><volume>13</volume><issue>6</issue><spage>45</spage><epage>48</epage><pages>45-48</pages><issn>0976-5697</issn><eissn>0976-5697</eissn><abstract>As time flows, the quantity of information, in particular textual content information will increase exponentially. Along with the information, our knowhow of Machine Learning additionally will increase and the computing electricity permits us to teach very complicated and big fashions faster. Fake information has been accumulating loads of interest international recently. The results may be political, economic, organizational, or maybe personal. This paper discusses the oneofakind evaluation of datasets and classifiers technique that's powerful for implementation of Deep gaining knowledge of and system gaining knowledge of that allows you to remedy the problem. Secondary cause of this evaluation on this paper is a faux information detection version that uses ngram evaluation and system gaining knowledge of strategies. We look at and evaluate oneofakind functions extraction strategies and 3 oneofakind system category datasets offer a mechanism for researchers to cope with excessive effect questions that might in any other case be prohibitively steeplypriced and timeingesting to study.</abstract><cop>Udaipur</cop><pub>International Journal of Advanced Research in Computer Science</pub><doi>10.26483/ijarcs.v13i6.6944</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0976-5697
ispartof International journal of advanced research in computer science, 2022-12, Vol.13 (6), p.45-48
issn 0976-5697
0976-5697
language eng
recordid cdi_proquest_journals_2759762791
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Classification
Computer science
Datasets
Deep learning
Evaluation
Information sources
Machine learning
Multimedia
Product reviews
Social networks
Systematic review
title ANALYSIS AND PREDICTION OF DATASET CATEGORIES FOR DEEP LEARNING IN FAUX NEWS DETECTION: A SYSTEMATIC REVIEW
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T05%3A54%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ANALYSIS%20AND%20PREDICTION%20OF%20DATASET%20CATEGORIES%20FOR%20DEEP%20LEARNING%20IN%20FAUX%20NEWS%20DETECTION:%20A%20SYSTEMATIC%20REVIEW&rft.jtitle=International%20journal%20of%20advanced%20research%20in%20computer%20science&rft.au=Deshmukh,%20Vaishnavi%20J.&rft.aucorp=Research%20Scholar%20Department%20of%20Computer%20Science%20&%20Engineering%20Kalinga%20University,%20Raipur,%20India&rft.date=2022-12-20&rft.volume=13&rft.issue=6&rft.spage=45&rft.epage=48&rft.pages=45-48&rft.issn=0976-5697&rft.eissn=0976-5697&rft_id=info:doi/10.26483/ijarcs.v13i6.6944&rft_dat=%3Cproquest_cross%3E2759762791%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2759762791&rft_id=info:pmid/&rfr_iscdi=true