Dynamic UPF placement and chaining reconfiguration in 5G networks
Network function virtualization (NFV) and multi-access edge computing (MEC) have become two crucial pillars in developing 5G and beyond networks. NFV promises cost-saving and fast revenue generation through dynamic instantiation and the scaling of virtual network functions (VNFs) according to time-v...
Gespeichert in:
Veröffentlicht in: | Computer networks (Amsterdam, Netherlands : 1999) Netherlands : 1999), 2022-10, Vol.215, p.109200, Article 109200 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 109200 |
container_title | Computer networks (Amsterdam, Netherlands : 1999) |
container_volume | 215 |
creator | Leyva-Pupo, Irian Cervelló-Pastor, Cristina Anagnostopoulos, Christos Pezaros, Dimitrios P. |
description | Network function virtualization (NFV) and multi-access edge computing (MEC) have become two crucial pillars in developing 5G and beyond networks. NFV promises cost-saving and fast revenue generation through dynamic instantiation and the scaling of virtual network functions (VNFs) according to time-varying service demands. Additionally, MEC provides considerable reductions in network response time and backhaul traffic since network functions and server applications can be deployed close to users. Nevertheless, the placement and chaining of VNFs at the network edge is challenging due to numerous aspects and attendant trade-offs. This paper addresses the problem of dynamic user plane function placement and chaining reconfiguration (UPCR) in a MEC environment to cope with user mobility while guaranteeing cost reductions and acceptable quality of service (QoS). The problem is formalized as a multi-objective integer linear programming model to minimize multiple cost components involved in the UPCR procedure. We propose a heuristic algorithm called dynamic priority and cautious UPCR (DPC-UPCR) to reduce the solution time complexity. Additionally, we devise a scheduler mechanism based on optimal stopping theory to determine the best reconfiguration time according to instantaneous values of latency violations and a pre-established QoS threshold. Our detailed simulation results evidence the efficiency of the proposed approaches. Specifically, the DPC-UPCR provides near-optimal solutions, within 15% of the optimum in the worst case, in significantly shorter times than the mathematical model. Moreover, the proposed scheduling method outperforms two scheduler baseline solutions regarding the number of reconfiguration events and QoS levels. |
doi_str_mv | 10.1016/j.comnet.2022.109200 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2759710381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1389128622002900</els_id><sourcerecordid>2759710381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-2eed522cb589ed6104b760e44003c7999fedccf56ba262e91ef8f2c4b5254a783</originalsourceid><addsrcrecordid>eNp9kM9LwzAUx4MoOKf_gYeA584kTdvkIozppjDQgzuHNH2dqWsyk07Zf29GPXt6j8f3B--D0C0lM0poed_NjO8dDDNGGEsnyQg5QxMqKpZVpJTnac-FzCgT5SW6irEjhHDOxATNH49O99bgzdsS73faQA9uwNo12Hxo66zb4gDGu9ZuD0EP1jtsHS5WOPX9-PAZr9FFq3cRbv7mFG2WT--L52z9unpZzNeZyQUZMgbQFIyZuhASmpISXlclAc4JyU0lpWyhMaYtylqzkoGk0IqWGV4XrOC6EvkU3Y25--C_DhAH1flDcKlSsaqQFSW5oEnFR5UJPsYArdoH2-twVJSoEyzVqRGWOsFSI6xkexhtkD74thBUNBacgcam7wfVePt_wC-gOXOV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2759710381</pqid></control><display><type>article</type><title>Dynamic UPF placement and chaining reconfiguration in 5G networks</title><source>Elsevier ScienceDirect Journals</source><creator>Leyva-Pupo, Irian ; Cervelló-Pastor, Cristina ; Anagnostopoulos, Christos ; Pezaros, Dimitrios P.</creator><creatorcontrib>Leyva-Pupo, Irian ; Cervelló-Pastor, Cristina ; Anagnostopoulos, Christos ; Pezaros, Dimitrios P.</creatorcontrib><description>Network function virtualization (NFV) and multi-access edge computing (MEC) have become two crucial pillars in developing 5G and beyond networks. NFV promises cost-saving and fast revenue generation through dynamic instantiation and the scaling of virtual network functions (VNFs) according to time-varying service demands. Additionally, MEC provides considerable reductions in network response time and backhaul traffic since network functions and server applications can be deployed close to users. Nevertheless, the placement and chaining of VNFs at the network edge is challenging due to numerous aspects and attendant trade-offs. This paper addresses the problem of dynamic user plane function placement and chaining reconfiguration (UPCR) in a MEC environment to cope with user mobility while guaranteeing cost reductions and acceptable quality of service (QoS). The problem is formalized as a multi-objective integer linear programming model to minimize multiple cost components involved in the UPCR procedure. We propose a heuristic algorithm called dynamic priority and cautious UPCR (DPC-UPCR) to reduce the solution time complexity. Additionally, we devise a scheduler mechanism based on optimal stopping theory to determine the best reconfiguration time according to instantaneous values of latency violations and a pre-established QoS threshold. Our detailed simulation results evidence the efficiency of the proposed approaches. Specifically, the DPC-UPCR provides near-optimal solutions, within 15% of the optimum in the worst case, in significantly shorter times than the mathematical model. Moreover, the proposed scheduling method outperforms two scheduler baseline solutions regarding the number of reconfiguration events and QoS levels.</description><identifier>ISSN: 1389-1286</identifier><identifier>EISSN: 1872-7069</identifier><identifier>DOI: 10.1016/j.comnet.2022.109200</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>5G mobile communication ; Algorithms ; Chaining ; Dynamic reconfiguration ; Edge computing ; Heuristic methods ; Integer linear programming (ILP) ; Integer programming ; Linear programming ; Mathematical models ; Mobile computing ; Network function virtualization (NFV) ; Network latency ; Optimal stopping theory (OST) ; Optimization ; Placement ; Quality of service ; Reconfiguration ; Response time ; Service function chain (SFC) ; User plane function (UPF) ; Virtual networks</subject><ispartof>Computer networks (Amsterdam, Netherlands : 1999), 2022-10, Vol.215, p.109200, Article 109200</ispartof><rights>2022 The Author(s)</rights><rights>Copyright Elsevier Sequoia S.A. Oct 9, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-2eed522cb589ed6104b760e44003c7999fedccf56ba262e91ef8f2c4b5254a783</citedby><cites>FETCH-LOGICAL-c380t-2eed522cb589ed6104b760e44003c7999fedccf56ba262e91ef8f2c4b5254a783</cites><orcidid>0000-0002-8056-0774 ; 0000-0003-1517-6757 ; 0000-0001-6356-5840 ; 0000-0003-0939-378X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1389128622002900$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Leyva-Pupo, Irian</creatorcontrib><creatorcontrib>Cervelló-Pastor, Cristina</creatorcontrib><creatorcontrib>Anagnostopoulos, Christos</creatorcontrib><creatorcontrib>Pezaros, Dimitrios P.</creatorcontrib><title>Dynamic UPF placement and chaining reconfiguration in 5G networks</title><title>Computer networks (Amsterdam, Netherlands : 1999)</title><description>Network function virtualization (NFV) and multi-access edge computing (MEC) have become two crucial pillars in developing 5G and beyond networks. NFV promises cost-saving and fast revenue generation through dynamic instantiation and the scaling of virtual network functions (VNFs) according to time-varying service demands. Additionally, MEC provides considerable reductions in network response time and backhaul traffic since network functions and server applications can be deployed close to users. Nevertheless, the placement and chaining of VNFs at the network edge is challenging due to numerous aspects and attendant trade-offs. This paper addresses the problem of dynamic user plane function placement and chaining reconfiguration (UPCR) in a MEC environment to cope with user mobility while guaranteeing cost reductions and acceptable quality of service (QoS). The problem is formalized as a multi-objective integer linear programming model to minimize multiple cost components involved in the UPCR procedure. We propose a heuristic algorithm called dynamic priority and cautious UPCR (DPC-UPCR) to reduce the solution time complexity. Additionally, we devise a scheduler mechanism based on optimal stopping theory to determine the best reconfiguration time according to instantaneous values of latency violations and a pre-established QoS threshold. Our detailed simulation results evidence the efficiency of the proposed approaches. Specifically, the DPC-UPCR provides near-optimal solutions, within 15% of the optimum in the worst case, in significantly shorter times than the mathematical model. Moreover, the proposed scheduling method outperforms two scheduler baseline solutions regarding the number of reconfiguration events and QoS levels.</description><subject>5G mobile communication</subject><subject>Algorithms</subject><subject>Chaining</subject><subject>Dynamic reconfiguration</subject><subject>Edge computing</subject><subject>Heuristic methods</subject><subject>Integer linear programming (ILP)</subject><subject>Integer programming</subject><subject>Linear programming</subject><subject>Mathematical models</subject><subject>Mobile computing</subject><subject>Network function virtualization (NFV)</subject><subject>Network latency</subject><subject>Optimal stopping theory (OST)</subject><subject>Optimization</subject><subject>Placement</subject><subject>Quality of service</subject><subject>Reconfiguration</subject><subject>Response time</subject><subject>Service function chain (SFC)</subject><subject>User plane function (UPF)</subject><subject>Virtual networks</subject><issn>1389-1286</issn><issn>1872-7069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM9LwzAUx4MoOKf_gYeA584kTdvkIozppjDQgzuHNH2dqWsyk07Zf29GPXt6j8f3B--D0C0lM0poed_NjO8dDDNGGEsnyQg5QxMqKpZVpJTnac-FzCgT5SW6irEjhHDOxATNH49O99bgzdsS73faQA9uwNo12Hxo66zb4gDGu9ZuD0EP1jtsHS5WOPX9-PAZr9FFq3cRbv7mFG2WT--L52z9unpZzNeZyQUZMgbQFIyZuhASmpISXlclAc4JyU0lpWyhMaYtylqzkoGk0IqWGV4XrOC6EvkU3Y25--C_DhAH1flDcKlSsaqQFSW5oEnFR5UJPsYArdoH2-twVJSoEyzVqRGWOsFSI6xkexhtkD74thBUNBacgcam7wfVePt_wC-gOXOV</recordid><startdate>20221009</startdate><enddate>20221009</enddate><creator>Leyva-Pupo, Irian</creator><creator>Cervelló-Pastor, Cristina</creator><creator>Anagnostopoulos, Christos</creator><creator>Pezaros, Dimitrios P.</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8056-0774</orcidid><orcidid>https://orcid.org/0000-0003-1517-6757</orcidid><orcidid>https://orcid.org/0000-0001-6356-5840</orcidid><orcidid>https://orcid.org/0000-0003-0939-378X</orcidid></search><sort><creationdate>20221009</creationdate><title>Dynamic UPF placement and chaining reconfiguration in 5G networks</title><author>Leyva-Pupo, Irian ; Cervelló-Pastor, Cristina ; Anagnostopoulos, Christos ; Pezaros, Dimitrios P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-2eed522cb589ed6104b760e44003c7999fedccf56ba262e91ef8f2c4b5254a783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>5G mobile communication</topic><topic>Algorithms</topic><topic>Chaining</topic><topic>Dynamic reconfiguration</topic><topic>Edge computing</topic><topic>Heuristic methods</topic><topic>Integer linear programming (ILP)</topic><topic>Integer programming</topic><topic>Linear programming</topic><topic>Mathematical models</topic><topic>Mobile computing</topic><topic>Network function virtualization (NFV)</topic><topic>Network latency</topic><topic>Optimal stopping theory (OST)</topic><topic>Optimization</topic><topic>Placement</topic><topic>Quality of service</topic><topic>Reconfiguration</topic><topic>Response time</topic><topic>Service function chain (SFC)</topic><topic>User plane function (UPF)</topic><topic>Virtual networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leyva-Pupo, Irian</creatorcontrib><creatorcontrib>Cervelló-Pastor, Cristina</creatorcontrib><creatorcontrib>Anagnostopoulos, Christos</creatorcontrib><creatorcontrib>Pezaros, Dimitrios P.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer networks (Amsterdam, Netherlands : 1999)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leyva-Pupo, Irian</au><au>Cervelló-Pastor, Cristina</au><au>Anagnostopoulos, Christos</au><au>Pezaros, Dimitrios P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic UPF placement and chaining reconfiguration in 5G networks</atitle><jtitle>Computer networks (Amsterdam, Netherlands : 1999)</jtitle><date>2022-10-09</date><risdate>2022</risdate><volume>215</volume><spage>109200</spage><pages>109200-</pages><artnum>109200</artnum><issn>1389-1286</issn><eissn>1872-7069</eissn><abstract>Network function virtualization (NFV) and multi-access edge computing (MEC) have become two crucial pillars in developing 5G and beyond networks. NFV promises cost-saving and fast revenue generation through dynamic instantiation and the scaling of virtual network functions (VNFs) according to time-varying service demands. Additionally, MEC provides considerable reductions in network response time and backhaul traffic since network functions and server applications can be deployed close to users. Nevertheless, the placement and chaining of VNFs at the network edge is challenging due to numerous aspects and attendant trade-offs. This paper addresses the problem of dynamic user plane function placement and chaining reconfiguration (UPCR) in a MEC environment to cope with user mobility while guaranteeing cost reductions and acceptable quality of service (QoS). The problem is formalized as a multi-objective integer linear programming model to minimize multiple cost components involved in the UPCR procedure. We propose a heuristic algorithm called dynamic priority and cautious UPCR (DPC-UPCR) to reduce the solution time complexity. Additionally, we devise a scheduler mechanism based on optimal stopping theory to determine the best reconfiguration time according to instantaneous values of latency violations and a pre-established QoS threshold. Our detailed simulation results evidence the efficiency of the proposed approaches. Specifically, the DPC-UPCR provides near-optimal solutions, within 15% of the optimum in the worst case, in significantly shorter times than the mathematical model. Moreover, the proposed scheduling method outperforms two scheduler baseline solutions regarding the number of reconfiguration events and QoS levels.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.comnet.2022.109200</doi><orcidid>https://orcid.org/0000-0002-8056-0774</orcidid><orcidid>https://orcid.org/0000-0003-1517-6757</orcidid><orcidid>https://orcid.org/0000-0001-6356-5840</orcidid><orcidid>https://orcid.org/0000-0003-0939-378X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1389-1286 |
ispartof | Computer networks (Amsterdam, Netherlands : 1999), 2022-10, Vol.215, p.109200, Article 109200 |
issn | 1389-1286 1872-7069 |
language | eng |
recordid | cdi_proquest_journals_2759710381 |
source | Elsevier ScienceDirect Journals |
subjects | 5G mobile communication Algorithms Chaining Dynamic reconfiguration Edge computing Heuristic methods Integer linear programming (ILP) Integer programming Linear programming Mathematical models Mobile computing Network function virtualization (NFV) Network latency Optimal stopping theory (OST) Optimization Placement Quality of service Reconfiguration Response time Service function chain (SFC) User plane function (UPF) Virtual networks |
title | Dynamic UPF placement and chaining reconfiguration in 5G networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A08%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20UPF%20placement%20and%20chaining%20reconfiguration%20in%205G%20networks&rft.jtitle=Computer%20networks%20(Amsterdam,%20Netherlands%20:%201999)&rft.au=Leyva-Pupo,%20Irian&rft.date=2022-10-09&rft.volume=215&rft.spage=109200&rft.pages=109200-&rft.artnum=109200&rft.issn=1389-1286&rft.eissn=1872-7069&rft_id=info:doi/10.1016/j.comnet.2022.109200&rft_dat=%3Cproquest_cross%3E2759710381%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2759710381&rft_id=info:pmid/&rft_els_id=S1389128622002900&rfr_iscdi=true |