Heliophysics Discovery Tools for the 21st Century: Data Science and Machine Learning Structures and Recommendations for 2020-2050
Three main points: 1. Data Science (DS) will be increasingly important to heliophysics; 2. Methods of heliophysics science discovery will continually evolve, requiring the use of learning technologies [e.g., machine learning (ML)] that are applied rigorously and that are capable of supporting discov...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-12 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | McGranaghan, R M Thompson, B Camporeale, E Bortnik, J Bobra, M Lapenta, G Wing, S Poduval, B Lotz, S Murray, S Kirk, M Chen, T Y Bain, H M Riley, P Tremblay, B Cheung, M Delouille, V |
description | Three main points: 1. Data Science (DS) will be increasingly important to heliophysics; 2. Methods of heliophysics science discovery will continually evolve, requiring the use of learning technologies [e.g., machine learning (ML)] that are applied rigorously and that are capable of supporting discovery; and 3. To grow with the pace of data, technology, and workforce changes, heliophysics requires a new approach to the representation of knowledge. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2759129000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2759129000</sourcerecordid><originalsourceid>FETCH-proquest_journals_27591290003</originalsourceid><addsrcrecordid>eNqNjstqAkEQRRshoBj_ocD1QE9NJj62PnARN9G9NG3ptIxV2tUjzNI_z5D4AVndxTkcbs8MsCjybPqB2Dcj1Yu1Fj8nWJbFwDw3VAe5Va0Gr7AM6uVBsYW9SK1wkgipIsBcEyyIUxPbOSxdcrDzgdgTOD7C1vkqMMEXuciBz7BLsfGdTPrLv8nL9Up8dCkI_2XRos3QlvbdvJ1crTR67dCM16v9YpPdotwb0nS4SBO5QweclLMcZ93_4n_WD4clTuk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2759129000</pqid></control><display><type>article</type><title>Heliophysics Discovery Tools for the 21st Century: Data Science and Machine Learning Structures and Recommendations for 2020-2050</title><source>Free E- Journals</source><creator>McGranaghan, R M ; Thompson, B ; Camporeale, E ; Bortnik, J ; Bobra, M ; Lapenta, G ; Wing, S ; Poduval, B ; Lotz, S ; Murray, S ; Kirk, M ; Chen, T Y ; Bain, H M ; Riley, P ; Tremblay, B ; Cheung, M ; Delouille, V</creator><creatorcontrib>McGranaghan, R M ; Thompson, B ; Camporeale, E ; Bortnik, J ; Bobra, M ; Lapenta, G ; Wing, S ; Poduval, B ; Lotz, S ; Murray, S ; Kirk, M ; Chen, T Y ; Bain, H M ; Riley, P ; Tremblay, B ; Cheung, M ; Delouille, V</creatorcontrib><description>Three main points: 1. Data Science (DS) will be increasingly important to heliophysics; 2. Methods of heliophysics science discovery will continually evolve, requiring the use of learning technologies [e.g., machine learning (ML)] that are applied rigorously and that are capable of supporting discovery; and 3. To grow with the pace of data, technology, and workforce changes, heliophysics requires a new approach to the representation of knowledge.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Data science ; Knowledge representation ; Machine learning</subject><ispartof>arXiv.org, 2022-12</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>McGranaghan, R M</creatorcontrib><creatorcontrib>Thompson, B</creatorcontrib><creatorcontrib>Camporeale, E</creatorcontrib><creatorcontrib>Bortnik, J</creatorcontrib><creatorcontrib>Bobra, M</creatorcontrib><creatorcontrib>Lapenta, G</creatorcontrib><creatorcontrib>Wing, S</creatorcontrib><creatorcontrib>Poduval, B</creatorcontrib><creatorcontrib>Lotz, S</creatorcontrib><creatorcontrib>Murray, S</creatorcontrib><creatorcontrib>Kirk, M</creatorcontrib><creatorcontrib>Chen, T Y</creatorcontrib><creatorcontrib>Bain, H M</creatorcontrib><creatorcontrib>Riley, P</creatorcontrib><creatorcontrib>Tremblay, B</creatorcontrib><creatorcontrib>Cheung, M</creatorcontrib><creatorcontrib>Delouille, V</creatorcontrib><title>Heliophysics Discovery Tools for the 21st Century: Data Science and Machine Learning Structures and Recommendations for 2020-2050</title><title>arXiv.org</title><description>Three main points: 1. Data Science (DS) will be increasingly important to heliophysics; 2. Methods of heliophysics science discovery will continually evolve, requiring the use of learning technologies [e.g., machine learning (ML)] that are applied rigorously and that are capable of supporting discovery; and 3. To grow with the pace of data, technology, and workforce changes, heliophysics requires a new approach to the representation of knowledge.</description><subject>Data science</subject><subject>Knowledge representation</subject><subject>Machine learning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjstqAkEQRRshoBj_ocD1QE9NJj62PnARN9G9NG3ptIxV2tUjzNI_z5D4AVndxTkcbs8MsCjybPqB2Dcj1Yu1Fj8nWJbFwDw3VAe5Va0Gr7AM6uVBsYW9SK1wkgipIsBcEyyIUxPbOSxdcrDzgdgTOD7C1vkqMMEXuciBz7BLsfGdTPrLv8nL9Up8dCkI_2XRos3QlvbdvJ1crTR67dCM16v9YpPdotwb0nS4SBO5QweclLMcZ93_4n_WD4clTuk</recordid><startdate>20221226</startdate><enddate>20221226</enddate><creator>McGranaghan, R M</creator><creator>Thompson, B</creator><creator>Camporeale, E</creator><creator>Bortnik, J</creator><creator>Bobra, M</creator><creator>Lapenta, G</creator><creator>Wing, S</creator><creator>Poduval, B</creator><creator>Lotz, S</creator><creator>Murray, S</creator><creator>Kirk, M</creator><creator>Chen, T Y</creator><creator>Bain, H M</creator><creator>Riley, P</creator><creator>Tremblay, B</creator><creator>Cheung, M</creator><creator>Delouille, V</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221226</creationdate><title>Heliophysics Discovery Tools for the 21st Century: Data Science and Machine Learning Structures and Recommendations for 2020-2050</title><author>McGranaghan, R M ; Thompson, B ; Camporeale, E ; Bortnik, J ; Bobra, M ; Lapenta, G ; Wing, S ; Poduval, B ; Lotz, S ; Murray, S ; Kirk, M ; Chen, T Y ; Bain, H M ; Riley, P ; Tremblay, B ; Cheung, M ; Delouille, V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27591290003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Data science</topic><topic>Knowledge representation</topic><topic>Machine learning</topic><toplevel>online_resources</toplevel><creatorcontrib>McGranaghan, R M</creatorcontrib><creatorcontrib>Thompson, B</creatorcontrib><creatorcontrib>Camporeale, E</creatorcontrib><creatorcontrib>Bortnik, J</creatorcontrib><creatorcontrib>Bobra, M</creatorcontrib><creatorcontrib>Lapenta, G</creatorcontrib><creatorcontrib>Wing, S</creatorcontrib><creatorcontrib>Poduval, B</creatorcontrib><creatorcontrib>Lotz, S</creatorcontrib><creatorcontrib>Murray, S</creatorcontrib><creatorcontrib>Kirk, M</creatorcontrib><creatorcontrib>Chen, T Y</creatorcontrib><creatorcontrib>Bain, H M</creatorcontrib><creatorcontrib>Riley, P</creatorcontrib><creatorcontrib>Tremblay, B</creatorcontrib><creatorcontrib>Cheung, M</creatorcontrib><creatorcontrib>Delouille, V</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McGranaghan, R M</au><au>Thompson, B</au><au>Camporeale, E</au><au>Bortnik, J</au><au>Bobra, M</au><au>Lapenta, G</au><au>Wing, S</au><au>Poduval, B</au><au>Lotz, S</au><au>Murray, S</au><au>Kirk, M</au><au>Chen, T Y</au><au>Bain, H M</au><au>Riley, P</au><au>Tremblay, B</au><au>Cheung, M</au><au>Delouille, V</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Heliophysics Discovery Tools for the 21st Century: Data Science and Machine Learning Structures and Recommendations for 2020-2050</atitle><jtitle>arXiv.org</jtitle><date>2022-12-26</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Three main points: 1. Data Science (DS) will be increasingly important to heliophysics; 2. Methods of heliophysics science discovery will continually evolve, requiring the use of learning technologies [e.g., machine learning (ML)] that are applied rigorously and that are capable of supporting discovery; and 3. To grow with the pace of data, technology, and workforce changes, heliophysics requires a new approach to the representation of knowledge.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2759129000 |
source | Free E- Journals |
subjects | Data science Knowledge representation Machine learning |
title | Heliophysics Discovery Tools for the 21st Century: Data Science and Machine Learning Structures and Recommendations for 2020-2050 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T18%3A11%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Heliophysics%20Discovery%20Tools%20for%20the%2021st%20Century:%20Data%20Science%20and%20Machine%20Learning%20Structures%20and%20Recommendations%20for%202020-2050&rft.jtitle=arXiv.org&rft.au=McGranaghan,%20R%20M&rft.date=2022-12-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2759129000%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2759129000&rft_id=info:pmid/&rfr_iscdi=true |