Fibered 3-manifolds and Veech groups

We study Veech groups associated to the pseudo-Anosov monodromies of fibers and foliations of a fixed hyperbolic 3-manifold. Assuming Lehmer's Conjecture, we prove that the Veech groups associated to fibers generically contain no parabolic elements. For foliations, we prove that the Veech group...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-03
Hauptverfasser: Leininger, Christopher J, Rafi, Kasra, Rouse, Nicholas, Shinkle, Emily, Verberne, Yvon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Leininger, Christopher J
Rafi, Kasra
Rouse, Nicholas
Shinkle, Emily
Verberne, Yvon
description We study Veech groups associated to the pseudo-Anosov monodromies of fibers and foliations of a fixed hyperbolic 3-manifold. Assuming Lehmer's Conjecture, we prove that the Veech groups associated to fibers generically contain no parabolic elements. For foliations, we prove that the Veech groups are always elementary.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2759127305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2759127305</sourcerecordid><originalsourceid>FETCH-proquest_journals_27591273053</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQcctMSi1KTVEw1s1NzMtMy89JKVZIzEtRCEtNTc5QSC_KLy0o5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCNzU0tDI3NjA1Nj4lQBAIc8Lgc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2759127305</pqid></control><display><type>article</type><title>Fibered 3-manifolds and Veech groups</title><source>Free E- Journals</source><creator>Leininger, Christopher J ; Rafi, Kasra ; Rouse, Nicholas ; Shinkle, Emily ; Verberne, Yvon</creator><creatorcontrib>Leininger, Christopher J ; Rafi, Kasra ; Rouse, Nicholas ; Shinkle, Emily ; Verberne, Yvon</creatorcontrib><description>We study Veech groups associated to the pseudo-Anosov monodromies of fibers and foliations of a fixed hyperbolic 3-manifold. Assuming Lehmer's Conjecture, we prove that the Veech groups associated to fibers generically contain no parabolic elements. For foliations, we prove that the Veech groups are always elementary.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Manifolds</subject><ispartof>arXiv.org, 2023-03</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Leininger, Christopher J</creatorcontrib><creatorcontrib>Rafi, Kasra</creatorcontrib><creatorcontrib>Rouse, Nicholas</creatorcontrib><creatorcontrib>Shinkle, Emily</creatorcontrib><creatorcontrib>Verberne, Yvon</creatorcontrib><title>Fibered 3-manifolds and Veech groups</title><title>arXiv.org</title><description>We study Veech groups associated to the pseudo-Anosov monodromies of fibers and foliations of a fixed hyperbolic 3-manifold. Assuming Lehmer's Conjecture, we prove that the Veech groups associated to fibers generically contain no parabolic elements. For foliations, we prove that the Veech groups are always elementary.</description><subject>Manifolds</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQcctMSi1KTVEw1s1NzMtMy89JKVZIzEtRCEtNTc5QSC_KLy0o5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCNzU0tDI3NjA1Nj4lQBAIc8Lgc</recordid><startdate>20230305</startdate><enddate>20230305</enddate><creator>Leininger, Christopher J</creator><creator>Rafi, Kasra</creator><creator>Rouse, Nicholas</creator><creator>Shinkle, Emily</creator><creator>Verberne, Yvon</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230305</creationdate><title>Fibered 3-manifolds and Veech groups</title><author>Leininger, Christopher J ; Rafi, Kasra ; Rouse, Nicholas ; Shinkle, Emily ; Verberne, Yvon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27591273053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Manifolds</topic><toplevel>online_resources</toplevel><creatorcontrib>Leininger, Christopher J</creatorcontrib><creatorcontrib>Rafi, Kasra</creatorcontrib><creatorcontrib>Rouse, Nicholas</creatorcontrib><creatorcontrib>Shinkle, Emily</creatorcontrib><creatorcontrib>Verberne, Yvon</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leininger, Christopher J</au><au>Rafi, Kasra</au><au>Rouse, Nicholas</au><au>Shinkle, Emily</au><au>Verberne, Yvon</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Fibered 3-manifolds and Veech groups</atitle><jtitle>arXiv.org</jtitle><date>2023-03-05</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We study Veech groups associated to the pseudo-Anosov monodromies of fibers and foliations of a fixed hyperbolic 3-manifold. Assuming Lehmer's Conjecture, we prove that the Veech groups associated to fibers generically contain no parabolic elements. For foliations, we prove that the Veech groups are always elementary.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2759127305
source Free E- Journals
subjects Manifolds
title Fibered 3-manifolds and Veech groups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A27%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Fibered%203-manifolds%20and%20Veech%20groups&rft.jtitle=arXiv.org&rft.au=Leininger,%20Christopher%20J&rft.date=2023-03-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2759127305%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2759127305&rft_id=info:pmid/&rfr_iscdi=true