Assessment of the mixing-limited hypothesis with first-principles simulation results

Starting with two well-tested, one-dimensional models of non-evaporating, mixing-limited sprays, governing equations for liquid mass and two-phase momentum for each model can be manipulated to reveal the formal similarity between momentum and liquid volume fraction. The consequence of this similarit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2022-12, Vol.34 (12)
Hauptverfasser: Schmidt, David P., Arienti, Marco, García-Oliver, José M, Pastor, José M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title Physics of fluids (1994)
container_volume 34
creator Schmidt, David P.
Arienti, Marco
García-Oliver, José M
Pastor, José M.
description Starting with two well-tested, one-dimensional models of non-evaporating, mixing-limited sprays, governing equations for liquid mass and two-phase momentum for each model can be manipulated to reveal the formal similarity between momentum and liquid volume fraction. The consequence of this similarity is that momentum, when properly non-dimensionalized, is equal to the liquid volume fraction at any time and at any axial location within a non-evaporating, mixing-limited spray with a constant rate of injection. An alternative, the more well-known similarity between mass fraction and velocity, is also mathematically evident. We compare predictions of this mathematical analysis to high-fidelity, first-principles simulation results of a non-evaporating spray to assess the validity of the theoretical similarity. The analysis of the simulation not only confirms the mathematical derivations but also points to subtlety in the definition of the spray velocity. In particular, the density-weighted velocity is required to observe similarity. The requirement of density-weighted velocity means that similarity tests require knowledge of both phase velocities. The agreement also works to confirm that the first-principles simulations are indeed mixing-limited, despite the finite nature of domain size and resolution.
doi_str_mv 10.1063/5.0126434
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2759103135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2759103135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-680cbdefb19cfc2829c0745e387216c99a7acb8239f914709e960fba45fa8e363</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKsL_0HAlUJqHjPJZFmKLyi4qeshkyZOyrzMzaD9905t167u4fBxz70HoVtGF4xK8ZgvKOMyE9kZmjFaaKKklOcHrSiRUrBLdAWwo5QKzeUMbZYADqB1XcK9x6l2uA0_ofskTWhDcltc74d-siEA_g6pxj5ESGSIobNhaBxgCO3YmBT6DkcHY5PgGl1404C7Oc05-nh-2qxeyfr95W21XBPLC5WILKitts5XTFs_WVxbqrLciUJxJq3WRhlbFVxor1mmqHZaUl-ZLPemcEKKObo77h1i_zU6SOWuH2M3RZZc5ZpRwUQ-UfdHysYeIDpfTse3Ju5LRstDaWVenkqb2IcjCzakv5_-gX8B0fps_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2759103135</pqid></control><display><type>article</type><title>Assessment of the mixing-limited hypothesis with first-principles simulation results</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Schmidt, David P. ; Arienti, Marco ; García-Oliver, José M ; Pastor, José M.</creator><creatorcontrib>Schmidt, David P. ; Arienti, Marco ; García-Oliver, José M ; Pastor, José M.</creatorcontrib><description>Starting with two well-tested, one-dimensional models of non-evaporating, mixing-limited sprays, governing equations for liquid mass and two-phase momentum for each model can be manipulated to reveal the formal similarity between momentum and liquid volume fraction. The consequence of this similarity is that momentum, when properly non-dimensionalized, is equal to the liquid volume fraction at any time and at any axial location within a non-evaporating, mixing-limited spray with a constant rate of injection. An alternative, the more well-known similarity between mass fraction and velocity, is also mathematically evident. We compare predictions of this mathematical analysis to high-fidelity, first-principles simulation results of a non-evaporating spray to assess the validity of the theoretical similarity. The analysis of the simulation not only confirms the mathematical derivations but also points to subtlety in the definition of the spray velocity. In particular, the density-weighted velocity is required to observe similarity. The requirement of density-weighted velocity means that similarity tests require knowledge of both phase velocities. The agreement also works to confirm that the first-principles simulations are indeed mixing-limited, despite the finite nature of domain size and resolution.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0126434</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Density ; Evaporation ; First principles ; Fluid dynamics ; Mathematical analysis ; Mathematical models ; Momentum ; One dimensional models ; Physics ; Similarity ; Simulation ; Velocity</subject><ispartof>Physics of fluids (1994), 2022-12, Vol.34 (12)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-680cbdefb19cfc2829c0745e387216c99a7acb8239f914709e960fba45fa8e363</cites><orcidid>0000-0003-4458-0353 ; 0000-0003-4876-1143 ; 0000-0002-2676-9681 ; 0000-0001-8166-0016</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids></links><search><creatorcontrib>Schmidt, David P.</creatorcontrib><creatorcontrib>Arienti, Marco</creatorcontrib><creatorcontrib>García-Oliver, José M</creatorcontrib><creatorcontrib>Pastor, José M.</creatorcontrib><title>Assessment of the mixing-limited hypothesis with first-principles simulation results</title><title>Physics of fluids (1994)</title><description>Starting with two well-tested, one-dimensional models of non-evaporating, mixing-limited sprays, governing equations for liquid mass and two-phase momentum for each model can be manipulated to reveal the formal similarity between momentum and liquid volume fraction. The consequence of this similarity is that momentum, when properly non-dimensionalized, is equal to the liquid volume fraction at any time and at any axial location within a non-evaporating, mixing-limited spray with a constant rate of injection. An alternative, the more well-known similarity between mass fraction and velocity, is also mathematically evident. We compare predictions of this mathematical analysis to high-fidelity, first-principles simulation results of a non-evaporating spray to assess the validity of the theoretical similarity. The analysis of the simulation not only confirms the mathematical derivations but also points to subtlety in the definition of the spray velocity. In particular, the density-weighted velocity is required to observe similarity. The requirement of density-weighted velocity means that similarity tests require knowledge of both phase velocities. The agreement also works to confirm that the first-principles simulations are indeed mixing-limited, despite the finite nature of domain size and resolution.</description><subject>Density</subject><subject>Evaporation</subject><subject>First principles</subject><subject>Fluid dynamics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Momentum</subject><subject>One dimensional models</subject><subject>Physics</subject><subject>Similarity</subject><subject>Simulation</subject><subject>Velocity</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKsL_0HAlUJqHjPJZFmKLyi4qeshkyZOyrzMzaD9905t167u4fBxz70HoVtGF4xK8ZgvKOMyE9kZmjFaaKKklOcHrSiRUrBLdAWwo5QKzeUMbZYADqB1XcK9x6l2uA0_ofskTWhDcltc74d-siEA_g6pxj5ESGSIobNhaBxgCO3YmBT6DkcHY5PgGl1404C7Oc05-nh-2qxeyfr95W21XBPLC5WILKitts5XTFs_WVxbqrLciUJxJq3WRhlbFVxor1mmqHZaUl-ZLPemcEKKObo77h1i_zU6SOWuH2M3RZZc5ZpRwUQ-UfdHysYeIDpfTse3Ju5LRstDaWVenkqb2IcjCzakv5_-gX8B0fps_A</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Schmidt, David P.</creator><creator>Arienti, Marco</creator><creator>García-Oliver, José M</creator><creator>Pastor, José M.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4458-0353</orcidid><orcidid>https://orcid.org/0000-0003-4876-1143</orcidid><orcidid>https://orcid.org/0000-0002-2676-9681</orcidid><orcidid>https://orcid.org/0000-0001-8166-0016</orcidid></search><sort><creationdate>202212</creationdate><title>Assessment of the mixing-limited hypothesis with first-principles simulation results</title><author>Schmidt, David P. ; Arienti, Marco ; García-Oliver, José M ; Pastor, José M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-680cbdefb19cfc2829c0745e387216c99a7acb8239f914709e960fba45fa8e363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Density</topic><topic>Evaporation</topic><topic>First principles</topic><topic>Fluid dynamics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Momentum</topic><topic>One dimensional models</topic><topic>Physics</topic><topic>Similarity</topic><topic>Simulation</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmidt, David P.</creatorcontrib><creatorcontrib>Arienti, Marco</creatorcontrib><creatorcontrib>García-Oliver, José M</creatorcontrib><creatorcontrib>Pastor, José M.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmidt, David P.</au><au>Arienti, Marco</au><au>García-Oliver, José M</au><au>Pastor, José M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of the mixing-limited hypothesis with first-principles simulation results</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2022-12</date><risdate>2022</risdate><volume>34</volume><issue>12</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Starting with two well-tested, one-dimensional models of non-evaporating, mixing-limited sprays, governing equations for liquid mass and two-phase momentum for each model can be manipulated to reveal the formal similarity between momentum and liquid volume fraction. The consequence of this similarity is that momentum, when properly non-dimensionalized, is equal to the liquid volume fraction at any time and at any axial location within a non-evaporating, mixing-limited spray with a constant rate of injection. An alternative, the more well-known similarity between mass fraction and velocity, is also mathematically evident. We compare predictions of this mathematical analysis to high-fidelity, first-principles simulation results of a non-evaporating spray to assess the validity of the theoretical similarity. The analysis of the simulation not only confirms the mathematical derivations but also points to subtlety in the definition of the spray velocity. In particular, the density-weighted velocity is required to observe similarity. The requirement of density-weighted velocity means that similarity tests require knowledge of both phase velocities. The agreement also works to confirm that the first-principles simulations are indeed mixing-limited, despite the finite nature of domain size and resolution.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0126434</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4458-0353</orcidid><orcidid>https://orcid.org/0000-0003-4876-1143</orcidid><orcidid>https://orcid.org/0000-0002-2676-9681</orcidid><orcidid>https://orcid.org/0000-0001-8166-0016</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2022-12, Vol.34 (12)
issn 1070-6631
1089-7666
language eng
recordid cdi_proquest_journals_2759103135
source AIP Journals Complete; Alma/SFX Local Collection
subjects Density
Evaporation
First principles
Fluid dynamics
Mathematical analysis
Mathematical models
Momentum
One dimensional models
Physics
Similarity
Simulation
Velocity
title Assessment of the mixing-limited hypothesis with first-principles simulation results
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T02%3A52%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20the%20mixing-limited%20hypothesis%20with%20first-principles%20simulation%20results&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Schmidt,%20David%20P.&rft.date=2022-12&rft.volume=34&rft.issue=12&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0126434&rft_dat=%3Cproquest_cross%3E2759103135%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2759103135&rft_id=info:pmid/&rfr_iscdi=true