Experimental study on slip flow of nitrogen through microchannels at atmospheric pressure

Gas flows through microchannels are commonly involved in various micro-electro-mechanical systems devices. Unlike the conventional flows at the macroscopic scale, micro-scale gas flows often show significant slip characteristics. This study designed a gas micro-flow measurement system based on the d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microfluidics and nanofluidics 2023-02, Vol.27 (2), p.7, Article 7
Hauptverfasser: Zhang, Yudong, Dou, Shuaiwei, Qi, Junxia, Xu, Xianzhong, Qiu, Jingjiang, Wei, Zon-Han
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 7
container_title Microfluidics and nanofluidics
container_volume 27
creator Zhang, Yudong
Dou, Shuaiwei
Qi, Junxia
Xu, Xianzhong
Qiu, Jingjiang
Wei, Zon-Han
description Gas flows through microchannels are commonly involved in various micro-electro-mechanical systems devices. Unlike the conventional flows at the macroscopic scale, micro-scale gas flows often show significant slip characteristics. This study designed a gas micro-flow measurement system based on the double-tank constant volume method to investigate the flow behaviors of gases through microchannels. The measurement system has a minimum mass flow rate resolution of 10 - 11  kg/s, which can meet the requirements of micro–nano-scale gas flow monitoring. We then investigated the slip flow characteristics of nitrogen in the microchannels at atmospheric pressure. The experimental data agreed well with the theoretical results based on the slip flow theory, which confirmed the existence of velocity slip in microchannels. In addition, we extracted the tangential momentum accommodation coefficients (TMAC) from the measured mass flow rates for different experimental conditions. The results showed that, in our experiment, the TMAC value ranged from 0.84 to 0.96 and tended to decrease with decreasing microchannel size.
doi_str_mv 10.1007/s10404-022-02616-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2758753353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2758753353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-fa2ef784da04784cb6426a946c0fe1838ce5e752e8c3d470977c7fd84ae0d7713</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIPcLLEOeBXYueIqvKQKnGBAyfLOOsmVWoHOxH073EpghvSrnYPM7Ozg9AlJdeUEHmTKBFEFISx3BWtCnqEZrSivBB1TY5_d8VO0VlKG0KEZJTM0Ovyc4DYbcGPpsdpnJodDh6nvhuw68MHDg77boxhDR6PbQzTusXbzsZgW-M99AmbMdc2pKHNQhYPEVKaIpyjE2f6BBc_c45e7pbPi4di9XT_uLhdFZbTeiycYeCkEo3JlpSwb5VglalFZYkDqriyUIIsGSjLGyFJLaWVrlHCAGmkpHyOrg66QwzvE6RRb8IUfT6pmSyVLDnPNUfsgMrOU4rg9JC_NnGnKdH7CPUhQp0j1N8R6r00P5BSBvs1xD_pf1hfEpB1TQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2758753353</pqid></control><display><type>article</type><title>Experimental study on slip flow of nitrogen through microchannels at atmospheric pressure</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhang, Yudong ; Dou, Shuaiwei ; Qi, Junxia ; Xu, Xianzhong ; Qiu, Jingjiang ; Wei, Zon-Han</creator><creatorcontrib>Zhang, Yudong ; Dou, Shuaiwei ; Qi, Junxia ; Xu, Xianzhong ; Qiu, Jingjiang ; Wei, Zon-Han</creatorcontrib><description>Gas flows through microchannels are commonly involved in various micro-electro-mechanical systems devices. Unlike the conventional flows at the macroscopic scale, micro-scale gas flows often show significant slip characteristics. This study designed a gas micro-flow measurement system based on the double-tank constant volume method to investigate the flow behaviors of gases through microchannels. The measurement system has a minimum mass flow rate resolution of 10 - 11  kg/s, which can meet the requirements of micro–nano-scale gas flow monitoring. We then investigated the slip flow characteristics of nitrogen in the microchannels at atmospheric pressure. The experimental data agreed well with the theoretical results based on the slip flow theory, which confirmed the existence of velocity slip in microchannels. In addition, we extracted the tangential momentum accommodation coefficients (TMAC) from the measured mass flow rates for different experimental conditions. The results showed that, in our experiment, the TMAC value ranged from 0.84 to 0.96 and tended to decrease with decreasing microchannel size.</description><identifier>ISSN: 1613-4982</identifier><identifier>EISSN: 1613-4990</identifier><identifier>DOI: 10.1007/s10404-022-02616-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analytical Chemistry ; Atmospheric pressure ; Biomedical Engineering and Bioengineering ; Coefficients ; Engineering ; Engineering Fluid Dynamics ; Flow characteristics ; Flow measurement ; Flow rates ; Flow theory ; Gas flow ; Gases ; Mass flow rate ; Measurement ; Microchannels ; Microelectromechanical systems ; Momentum ; Nanotechnology and Microengineering ; Nitrogen ; Research Paper ; Slip flow</subject><ispartof>Microfluidics and nanofluidics, 2023-02, Vol.27 (2), p.7, Article 7</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-fa2ef784da04784cb6426a946c0fe1838ce5e752e8c3d470977c7fd84ae0d7713</citedby><cites>FETCH-LOGICAL-c319t-fa2ef784da04784cb6426a946c0fe1838ce5e752e8c3d470977c7fd84ae0d7713</cites><orcidid>0000-0001-5690-6467</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10404-022-02616-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10404-022-02616-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhang, Yudong</creatorcontrib><creatorcontrib>Dou, Shuaiwei</creatorcontrib><creatorcontrib>Qi, Junxia</creatorcontrib><creatorcontrib>Xu, Xianzhong</creatorcontrib><creatorcontrib>Qiu, Jingjiang</creatorcontrib><creatorcontrib>Wei, Zon-Han</creatorcontrib><title>Experimental study on slip flow of nitrogen through microchannels at atmospheric pressure</title><title>Microfluidics and nanofluidics</title><addtitle>Microfluid Nanofluid</addtitle><description>Gas flows through microchannels are commonly involved in various micro-electro-mechanical systems devices. Unlike the conventional flows at the macroscopic scale, micro-scale gas flows often show significant slip characteristics. This study designed a gas micro-flow measurement system based on the double-tank constant volume method to investigate the flow behaviors of gases through microchannels. The measurement system has a minimum mass flow rate resolution of 10 - 11  kg/s, which can meet the requirements of micro–nano-scale gas flow monitoring. We then investigated the slip flow characteristics of nitrogen in the microchannels at atmospheric pressure. The experimental data agreed well with the theoretical results based on the slip flow theory, which confirmed the existence of velocity slip in microchannels. In addition, we extracted the tangential momentum accommodation coefficients (TMAC) from the measured mass flow rates for different experimental conditions. The results showed that, in our experiment, the TMAC value ranged from 0.84 to 0.96 and tended to decrease with decreasing microchannel size.</description><subject>Analytical Chemistry</subject><subject>Atmospheric pressure</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Coefficients</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Flow characteristics</subject><subject>Flow measurement</subject><subject>Flow rates</subject><subject>Flow theory</subject><subject>Gas flow</subject><subject>Gases</subject><subject>Mass flow rate</subject><subject>Measurement</subject><subject>Microchannels</subject><subject>Microelectromechanical systems</subject><subject>Momentum</subject><subject>Nanotechnology and Microengineering</subject><subject>Nitrogen</subject><subject>Research Paper</subject><subject>Slip flow</subject><issn>1613-4982</issn><issn>1613-4990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9UMtOwzAQtBBIlMIPcLLEOeBXYueIqvKQKnGBAyfLOOsmVWoHOxH073EpghvSrnYPM7Ozg9AlJdeUEHmTKBFEFISx3BWtCnqEZrSivBB1TY5_d8VO0VlKG0KEZJTM0Ovyc4DYbcGPpsdpnJodDh6nvhuw68MHDg77boxhDR6PbQzTusXbzsZgW-M99AmbMdc2pKHNQhYPEVKaIpyjE2f6BBc_c45e7pbPi4di9XT_uLhdFZbTeiycYeCkEo3JlpSwb5VglalFZYkDqriyUIIsGSjLGyFJLaWVrlHCAGmkpHyOrg66QwzvE6RRb8IUfT6pmSyVLDnPNUfsgMrOU4rg9JC_NnGnKdH7CPUhQp0j1N8R6r00P5BSBvs1xD_pf1hfEpB1TQ</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Zhang, Yudong</creator><creator>Dou, Shuaiwei</creator><creator>Qi, Junxia</creator><creator>Xu, Xianzhong</creator><creator>Qiu, Jingjiang</creator><creator>Wei, Zon-Han</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-5690-6467</orcidid></search><sort><creationdate>20230201</creationdate><title>Experimental study on slip flow of nitrogen through microchannels at atmospheric pressure</title><author>Zhang, Yudong ; Dou, Shuaiwei ; Qi, Junxia ; Xu, Xianzhong ; Qiu, Jingjiang ; Wei, Zon-Han</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-fa2ef784da04784cb6426a946c0fe1838ce5e752e8c3d470977c7fd84ae0d7713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analytical Chemistry</topic><topic>Atmospheric pressure</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Coefficients</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Flow characteristics</topic><topic>Flow measurement</topic><topic>Flow rates</topic><topic>Flow theory</topic><topic>Gas flow</topic><topic>Gases</topic><topic>Mass flow rate</topic><topic>Measurement</topic><topic>Microchannels</topic><topic>Microelectromechanical systems</topic><topic>Momentum</topic><topic>Nanotechnology and Microengineering</topic><topic>Nitrogen</topic><topic>Research Paper</topic><topic>Slip flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yudong</creatorcontrib><creatorcontrib>Dou, Shuaiwei</creatorcontrib><creatorcontrib>Qi, Junxia</creatorcontrib><creatorcontrib>Xu, Xianzhong</creatorcontrib><creatorcontrib>Qiu, Jingjiang</creatorcontrib><creatorcontrib>Wei, Zon-Han</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Microfluidics and nanofluidics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yudong</au><au>Dou, Shuaiwei</au><au>Qi, Junxia</au><au>Xu, Xianzhong</au><au>Qiu, Jingjiang</au><au>Wei, Zon-Han</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental study on slip flow of nitrogen through microchannels at atmospheric pressure</atitle><jtitle>Microfluidics and nanofluidics</jtitle><stitle>Microfluid Nanofluid</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>27</volume><issue>2</issue><spage>7</spage><pages>7-</pages><artnum>7</artnum><issn>1613-4982</issn><eissn>1613-4990</eissn><abstract>Gas flows through microchannels are commonly involved in various micro-electro-mechanical systems devices. Unlike the conventional flows at the macroscopic scale, micro-scale gas flows often show significant slip characteristics. This study designed a gas micro-flow measurement system based on the double-tank constant volume method to investigate the flow behaviors of gases through microchannels. The measurement system has a minimum mass flow rate resolution of 10 - 11  kg/s, which can meet the requirements of micro–nano-scale gas flow monitoring. We then investigated the slip flow characteristics of nitrogen in the microchannels at atmospheric pressure. The experimental data agreed well with the theoretical results based on the slip flow theory, which confirmed the existence of velocity slip in microchannels. In addition, we extracted the tangential momentum accommodation coefficients (TMAC) from the measured mass flow rates for different experimental conditions. The results showed that, in our experiment, the TMAC value ranged from 0.84 to 0.96 and tended to decrease with decreasing microchannel size.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10404-022-02616-1</doi><orcidid>https://orcid.org/0000-0001-5690-6467</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-4982
ispartof Microfluidics and nanofluidics, 2023-02, Vol.27 (2), p.7, Article 7
issn 1613-4982
1613-4990
language eng
recordid cdi_proquest_journals_2758753353
source SpringerLink Journals - AutoHoldings
subjects Analytical Chemistry
Atmospheric pressure
Biomedical Engineering and Bioengineering
Coefficients
Engineering
Engineering Fluid Dynamics
Flow characteristics
Flow measurement
Flow rates
Flow theory
Gas flow
Gases
Mass flow rate
Measurement
Microchannels
Microelectromechanical systems
Momentum
Nanotechnology and Microengineering
Nitrogen
Research Paper
Slip flow
title Experimental study on slip flow of nitrogen through microchannels at atmospheric pressure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T12%3A14%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20study%20on%20slip%20flow%20of%20nitrogen%20through%20microchannels%20at%20atmospheric%20pressure&rft.jtitle=Microfluidics%20and%20nanofluidics&rft.au=Zhang,%20Yudong&rft.date=2023-02-01&rft.volume=27&rft.issue=2&rft.spage=7&rft.pages=7-&rft.artnum=7&rft.issn=1613-4982&rft.eissn=1613-4990&rft_id=info:doi/10.1007/s10404-022-02616-1&rft_dat=%3Cproquest_cross%3E2758753353%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2758753353&rft_id=info:pmid/&rfr_iscdi=true