Sensitivity of Observationally Based Estimates of Ocean Heat Content and Thermal Expansion to Vertical Interpolation Schemes

Changes in ocean heat content are a critical element of climate change, with the oceans containing about 90% of the excess heat stored in the climate system and 60% in the upper 700 db. Estimates of these changes are sensitive to horizontal mapping of the sparse historical data and errors in eXpenda...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2022-12, Vol.49 (24), p.n/a
Hauptverfasser: Li, Yuehua, Church, John A., McDougall, Trevor J., Barker, Paul M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 24
container_start_page
container_title Geophysical research letters
container_volume 49
creator Li, Yuehua
Church, John A.
McDougall, Trevor J.
Barker, Paul M.
description Changes in ocean heat content are a critical element of climate change, with the oceans containing about 90% of the excess heat stored in the climate system and 60% in the upper 700 db. Estimates of these changes are sensitive to horizontal mapping of the sparse historical data and errors in eXpendable BathyThermograph data. Here we show that they are also sensitive to the vertical interpolation of sparsely sampled data through the water column. We estimate, using carefully constructed vertical interpolation methods with high‐quality hydrographic (bottle and CTD) data, the observationally based upper ocean heat content increase (thermosteric sea level rise) from 1956 to 2020 is 285 Zeta Joules (0.55 mm yr−1), 14% (14%) larger than estimates relying on simple but biased linear interpolation schemes. The underestimates have a clear spatial pattern with their maximum near 15°N and 12°S, around the maxima in the curvature of the temperature‐depth profile. Plain Language Summary Change in ocean heat content is a critical element of anthropogenic climate change, with the oceans containing about 90% of the excess heat stored in the climates system. We show that linear vertical interpolation of sparse ocean temperature observations results in warm biases in upper ocean heat storage because of the curvature of the depth‐temperature profile. Because the vertical sampling has increased in recent years, these biases result in underestimates of heat content trends. Our results show that more sophisticated vertical interpolation methods (rather than linear interpolation) result in 14% larger trends in upper ocean heat content increase and thermosteric sea level rise from 1956 to 2020. The underestimates have a clear spatial pattern with their maximum near 15°N and 12°S around the location with the maxima in the curvature of the temperature depth profile. Key Points Estimates of upper ocean warming with an improved vertical interpolation method are 14% larger than linear interpolation (LIN) schemes The corresponding upper ocean thermal expansion is 14% larger than LIN The larger values occur most strongly near 15°N and 12°S, near the maxima in the curvature of the temperature depth profile
doi_str_mv 10.1029/2022GL101079
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2758699545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2758699545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3448-5c6915ee2fb1748f8a5da9f843c6dde8cdf66079ca7e7fe5f632f4a5598a62253</originalsourceid><addsrcrecordid>eNp90EFLwzAUB_AgCs7pzQ8Q8Go1SZs0OeqY26AwcNNrydIX1tE1M8mmAz-83ebBk6f3ePz4w_8hdEvJAyVMPTLC2KighJJcnaEeVVmWSELyc9QjRHU7y8UlugphRQhJSUp76HsGbahjvavjHjuLp4sAfqdj7VrdNHv8rANUeBhivdYRwpEY0C0eg4544NoIbcS6rfB8CX6tGzz82ugu0rU4OvwOPtamu0466DeuOSbjmVnCGsI1urC6CXDzO_vo7WU4H4yTYjqaDJ6KxKRZJhNuhKIcgNkFzTNppeaVVlZmqRFVBdJUVoiustE55Ba4FSmzmeZcSS0Y42kf3Z1yN959bCHEcuW2visYSpZzKZTi2UHdn5TxLgQPttz4rrXfl5SUh_-Wf__bcXbin3UD-39tOXotBE-pTH8AS_t9ew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2758699545</pqid></control><display><type>article</type><title>Sensitivity of Observationally Based Estimates of Ocean Heat Content and Thermal Expansion to Vertical Interpolation Schemes</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Li, Yuehua ; Church, John A. ; McDougall, Trevor J. ; Barker, Paul M.</creator><creatorcontrib>Li, Yuehua ; Church, John A. ; McDougall, Trevor J. ; Barker, Paul M.</creatorcontrib><description>Changes in ocean heat content are a critical element of climate change, with the oceans containing about 90% of the excess heat stored in the climate system and 60% in the upper 700 db. Estimates of these changes are sensitive to horizontal mapping of the sparse historical data and errors in eXpendable BathyThermograph data. Here we show that they are also sensitive to the vertical interpolation of sparsely sampled data through the water column. We estimate, using carefully constructed vertical interpolation methods with high‐quality hydrographic (bottle and CTD) data, the observationally based upper ocean heat content increase (thermosteric sea level rise) from 1956 to 2020 is 285 Zeta Joules (0.55 mm yr−1), 14% (14%) larger than estimates relying on simple but biased linear interpolation schemes. The underestimates have a clear spatial pattern with their maximum near 15°N and 12°S, around the maxima in the curvature of the temperature‐depth profile. Plain Language Summary Change in ocean heat content is a critical element of anthropogenic climate change, with the oceans containing about 90% of the excess heat stored in the climates system. We show that linear vertical interpolation of sparse ocean temperature observations results in warm biases in upper ocean heat storage because of the curvature of the depth‐temperature profile. Because the vertical sampling has increased in recent years, these biases result in underestimates of heat content trends. Our results show that more sophisticated vertical interpolation methods (rather than linear interpolation) result in 14% larger trends in upper ocean heat content increase and thermosteric sea level rise from 1956 to 2020. The underestimates have a clear spatial pattern with their maximum near 15°N and 12°S around the location with the maxima in the curvature of the temperature depth profile. Key Points Estimates of upper ocean warming with an improved vertical interpolation method are 14% larger than linear interpolation (LIN) schemes The corresponding upper ocean thermal expansion is 14% larger than LIN The larger values occur most strongly near 15°N and 12°S, near the maxima in the curvature of the temperature depth profile</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2022GL101079</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Anthropogenic climate changes ; Anthropogenic factors ; Bathythermographs ; Climate change ; Climate system ; Curvature ; Depth ; Depth profiling ; Enthalpy ; Estimates ; global warming ; Heat ; Heat content ; Heat storage ; History ; Interpolation ; Interpolation methods ; ocean heat content ; Ocean temperature ; Oceans ; Sea level ; Sea level changes ; Sea level rise ; Temperature profile ; Temperature profiles ; Thermal expansion ; Trends ; Upper ocean ; Water circulation ; Water column</subject><ispartof>Geophysical research letters, 2022-12, Vol.49 (24), p.n/a</ispartof><rights>2022. The Authors.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3448-5c6915ee2fb1748f8a5da9f843c6dde8cdf66079ca7e7fe5f632f4a5598a62253</citedby><cites>FETCH-LOGICAL-c3448-5c6915ee2fb1748f8a5da9f843c6dde8cdf66079ca7e7fe5f632f4a5598a62253</cites><orcidid>0000-0002-7037-8194 ; 0000-0003-4582-7741 ; 0000-0001-6447-8538</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2022GL101079$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2022GL101079$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids></links><search><creatorcontrib>Li, Yuehua</creatorcontrib><creatorcontrib>Church, John A.</creatorcontrib><creatorcontrib>McDougall, Trevor J.</creatorcontrib><creatorcontrib>Barker, Paul M.</creatorcontrib><title>Sensitivity of Observationally Based Estimates of Ocean Heat Content and Thermal Expansion to Vertical Interpolation Schemes</title><title>Geophysical research letters</title><description>Changes in ocean heat content are a critical element of climate change, with the oceans containing about 90% of the excess heat stored in the climate system and 60% in the upper 700 db. Estimates of these changes are sensitive to horizontal mapping of the sparse historical data and errors in eXpendable BathyThermograph data. Here we show that they are also sensitive to the vertical interpolation of sparsely sampled data through the water column. We estimate, using carefully constructed vertical interpolation methods with high‐quality hydrographic (bottle and CTD) data, the observationally based upper ocean heat content increase (thermosteric sea level rise) from 1956 to 2020 is 285 Zeta Joules (0.55 mm yr−1), 14% (14%) larger than estimates relying on simple but biased linear interpolation schemes. The underestimates have a clear spatial pattern with their maximum near 15°N and 12°S, around the maxima in the curvature of the temperature‐depth profile. Plain Language Summary Change in ocean heat content is a critical element of anthropogenic climate change, with the oceans containing about 90% of the excess heat stored in the climates system. We show that linear vertical interpolation of sparse ocean temperature observations results in warm biases in upper ocean heat storage because of the curvature of the depth‐temperature profile. Because the vertical sampling has increased in recent years, these biases result in underestimates of heat content trends. Our results show that more sophisticated vertical interpolation methods (rather than linear interpolation) result in 14% larger trends in upper ocean heat content increase and thermosteric sea level rise from 1956 to 2020. The underestimates have a clear spatial pattern with their maximum near 15°N and 12°S around the location with the maxima in the curvature of the temperature depth profile. Key Points Estimates of upper ocean warming with an improved vertical interpolation method are 14% larger than linear interpolation (LIN) schemes The corresponding upper ocean thermal expansion is 14% larger than LIN The larger values occur most strongly near 15°N and 12°S, near the maxima in the curvature of the temperature depth profile</description><subject>Anthropogenic climate changes</subject><subject>Anthropogenic factors</subject><subject>Bathythermographs</subject><subject>Climate change</subject><subject>Climate system</subject><subject>Curvature</subject><subject>Depth</subject><subject>Depth profiling</subject><subject>Enthalpy</subject><subject>Estimates</subject><subject>global warming</subject><subject>Heat</subject><subject>Heat content</subject><subject>Heat storage</subject><subject>History</subject><subject>Interpolation</subject><subject>Interpolation methods</subject><subject>ocean heat content</subject><subject>Ocean temperature</subject><subject>Oceans</subject><subject>Sea level</subject><subject>Sea level changes</subject><subject>Sea level rise</subject><subject>Temperature profile</subject><subject>Temperature profiles</subject><subject>Thermal expansion</subject><subject>Trends</subject><subject>Upper ocean</subject><subject>Water circulation</subject><subject>Water column</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp90EFLwzAUB_AgCs7pzQ8Q8Go1SZs0OeqY26AwcNNrydIX1tE1M8mmAz-83ebBk6f3ePz4w_8hdEvJAyVMPTLC2KighJJcnaEeVVmWSELyc9QjRHU7y8UlugphRQhJSUp76HsGbahjvavjHjuLp4sAfqdj7VrdNHv8rANUeBhivdYRwpEY0C0eg4544NoIbcS6rfB8CX6tGzz82ugu0rU4OvwOPtamu0466DeuOSbjmVnCGsI1urC6CXDzO_vo7WU4H4yTYjqaDJ6KxKRZJhNuhKIcgNkFzTNppeaVVlZmqRFVBdJUVoiustE55Ba4FSmzmeZcSS0Y42kf3Z1yN959bCHEcuW2visYSpZzKZTi2UHdn5TxLgQPttz4rrXfl5SUh_-Wf__bcXbin3UD-39tOXotBE-pTH8AS_t9ew</recordid><startdate>20221228</startdate><enddate>20221228</enddate><creator>Li, Yuehua</creator><creator>Church, John A.</creator><creator>McDougall, Trevor J.</creator><creator>Barker, Paul M.</creator><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7037-8194</orcidid><orcidid>https://orcid.org/0000-0003-4582-7741</orcidid><orcidid>https://orcid.org/0000-0001-6447-8538</orcidid></search><sort><creationdate>20221228</creationdate><title>Sensitivity of Observationally Based Estimates of Ocean Heat Content and Thermal Expansion to Vertical Interpolation Schemes</title><author>Li, Yuehua ; Church, John A. ; McDougall, Trevor J. ; Barker, Paul M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3448-5c6915ee2fb1748f8a5da9f843c6dde8cdf66079ca7e7fe5f632f4a5598a62253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anthropogenic climate changes</topic><topic>Anthropogenic factors</topic><topic>Bathythermographs</topic><topic>Climate change</topic><topic>Climate system</topic><topic>Curvature</topic><topic>Depth</topic><topic>Depth profiling</topic><topic>Enthalpy</topic><topic>Estimates</topic><topic>global warming</topic><topic>Heat</topic><topic>Heat content</topic><topic>Heat storage</topic><topic>History</topic><topic>Interpolation</topic><topic>Interpolation methods</topic><topic>ocean heat content</topic><topic>Ocean temperature</topic><topic>Oceans</topic><topic>Sea level</topic><topic>Sea level changes</topic><topic>Sea level rise</topic><topic>Temperature profile</topic><topic>Temperature profiles</topic><topic>Thermal expansion</topic><topic>Trends</topic><topic>Upper ocean</topic><topic>Water circulation</topic><topic>Water column</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yuehua</creatorcontrib><creatorcontrib>Church, John A.</creatorcontrib><creatorcontrib>McDougall, Trevor J.</creatorcontrib><creatorcontrib>Barker, Paul M.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yuehua</au><au>Church, John A.</au><au>McDougall, Trevor J.</au><au>Barker, Paul M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensitivity of Observationally Based Estimates of Ocean Heat Content and Thermal Expansion to Vertical Interpolation Schemes</atitle><jtitle>Geophysical research letters</jtitle><date>2022-12-28</date><risdate>2022</risdate><volume>49</volume><issue>24</issue><epage>n/a</epage><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Changes in ocean heat content are a critical element of climate change, with the oceans containing about 90% of the excess heat stored in the climate system and 60% in the upper 700 db. Estimates of these changes are sensitive to horizontal mapping of the sparse historical data and errors in eXpendable BathyThermograph data. Here we show that they are also sensitive to the vertical interpolation of sparsely sampled data through the water column. We estimate, using carefully constructed vertical interpolation methods with high‐quality hydrographic (bottle and CTD) data, the observationally based upper ocean heat content increase (thermosteric sea level rise) from 1956 to 2020 is 285 Zeta Joules (0.55 mm yr−1), 14% (14%) larger than estimates relying on simple but biased linear interpolation schemes. The underestimates have a clear spatial pattern with their maximum near 15°N and 12°S, around the maxima in the curvature of the temperature‐depth profile. Plain Language Summary Change in ocean heat content is a critical element of anthropogenic climate change, with the oceans containing about 90% of the excess heat stored in the climates system. We show that linear vertical interpolation of sparse ocean temperature observations results in warm biases in upper ocean heat storage because of the curvature of the depth‐temperature profile. Because the vertical sampling has increased in recent years, these biases result in underestimates of heat content trends. Our results show that more sophisticated vertical interpolation methods (rather than linear interpolation) result in 14% larger trends in upper ocean heat content increase and thermosteric sea level rise from 1956 to 2020. The underestimates have a clear spatial pattern with their maximum near 15°N and 12°S around the location with the maxima in the curvature of the temperature depth profile. Key Points Estimates of upper ocean warming with an improved vertical interpolation method are 14% larger than linear interpolation (LIN) schemes The corresponding upper ocean thermal expansion is 14% larger than LIN The larger values occur most strongly near 15°N and 12°S, near the maxima in the curvature of the temperature depth profile</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1029/2022GL101079</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7037-8194</orcidid><orcidid>https://orcid.org/0000-0003-4582-7741</orcidid><orcidid>https://orcid.org/0000-0001-6447-8538</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2022-12, Vol.49 (24), p.n/a
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_journals_2758699545
source Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Anthropogenic climate changes
Anthropogenic factors
Bathythermographs
Climate change
Climate system
Curvature
Depth
Depth profiling
Enthalpy
Estimates
global warming
Heat
Heat content
Heat storage
History
Interpolation
Interpolation methods
ocean heat content
Ocean temperature
Oceans
Sea level
Sea level changes
Sea level rise
Temperature profile
Temperature profiles
Thermal expansion
Trends
Upper ocean
Water circulation
Water column
title Sensitivity of Observationally Based Estimates of Ocean Heat Content and Thermal Expansion to Vertical Interpolation Schemes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T23%3A16%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensitivity%20of%20Observationally%20Based%20Estimates%20of%20Ocean%20Heat%20Content%20and%20Thermal%20Expansion%20to%20Vertical%20Interpolation%20Schemes&rft.jtitle=Geophysical%20research%20letters&rft.au=Li,%20Yuehua&rft.date=2022-12-28&rft.volume=49&rft.issue=24&rft.epage=n/a&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1029/2022GL101079&rft_dat=%3Cproquest_cross%3E2758699545%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2758699545&rft_id=info:pmid/&rfr_iscdi=true