Coseismic Slip Model of the 2022 Mw 6.7 Luding (Tibet) Earthquake: Pre‐ and Post‐Earthquake Interactions With Surrounding Major Faults

The 5 September 2022 Mw 6.7 Luding earthquake occurred on the Moxi segment of the highly active Xianshuihe fault in eastern Tibet. Here, we constrain the coseismic slip by jointly inverting the coseismic displacements measured by Global Positioning System, seismometer and Interferometric Synthetic A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2022-12, Vol.49 (24), p.n/a
Hauptverfasser: Li, Yanchuan, Zhao, Dezheng, Shan, Xinjian, Gao, Zhiyu, Huang, Xing, Gong, Wenyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 24
container_start_page
container_title Geophysical research letters
container_volume 49
creator Li, Yanchuan
Zhao, Dezheng
Shan, Xinjian
Gao, Zhiyu
Huang, Xing
Gong, Wenyu
description The 5 September 2022 Mw 6.7 Luding earthquake occurred on the Moxi segment of the highly active Xianshuihe fault in eastern Tibet. Here, we constrain the coseismic slip by jointly inverting the coseismic displacements measured by Global Positioning System, seismometer and Interferometric Synthetic Aperture Radar. Along the Moxi fault, concentrated left‐lateral strike slip extends ∼30 km along the strike above 10 km depth, producing 0.7–1.0 m shallow slip. Clustered aftershocks and slip inversions suggest that the secondary conjugate Mozigou fault may also involve the rupture. Southward rupture propagation is likely arrested by the barrier‐like fault segments of the Xianshuihe fault, characterized by high interseismic coupling (>0.6) and reduced shear stress rate (
doi_str_mv 10.1029/2022GL102043
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2758699525</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2758699525</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3672-d7d94ecb5e032c73ceb86954caa44dbebbfa33579f4bc2aa0f848716f28371d63</originalsourceid><addsrcrecordid>eNp9kEFLwzAYhoMoOKc3f8AHXhTcTJO0ab3J2Oagw-EmHkvapi6za7YkZezm2ZO_0V9i5wQ9efpe-B6eF16Ezj3c9TCJbggmZBg3ETN6gFpexFgnxJgfohbGUZMJD47RibULjDHF1Guh9562UtmlymBaqhWMdS5L0AW4uYSdD8YbCLoc4jpX1QtczlQq3RX0hXHzdS1e5S1MjPx8-wBR5TDR1jX59wujykkjMqd0ZeFZuTlMa2N0XX3rxmKhDQxEXTp7io4KUVp59nPb6GnQn_XuO_HDcNS7izuCBpx0cp5HTGapLzElGaeZTMMg8lkmBGN5KtO0EJT6PCpYmhEhcBGykHtBQULKvTygbXSx966MXtfSumSha1M1lQnhfuOKfOI31PWeyoy21sgiWRm1FGabeDjZrZ38XbvByR7fqFJu_2WT4WMc-CQi9At7YYF6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2758699525</pqid></control><display><type>article</type><title>Coseismic Slip Model of the 2022 Mw 6.7 Luding (Tibet) Earthquake: Pre‐ and Post‐Earthquake Interactions With Surrounding Major Faults</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Li, Yanchuan ; Zhao, Dezheng ; Shan, Xinjian ; Gao, Zhiyu ; Huang, Xing ; Gong, Wenyu</creator><creatorcontrib>Li, Yanchuan ; Zhao, Dezheng ; Shan, Xinjian ; Gao, Zhiyu ; Huang, Xing ; Gong, Wenyu</creatorcontrib><description>The 5 September 2022 Mw 6.7 Luding earthquake occurred on the Moxi segment of the highly active Xianshuihe fault in eastern Tibet. Here, we constrain the coseismic slip by jointly inverting the coseismic displacements measured by Global Positioning System, seismometer and Interferometric Synthetic Aperture Radar. Along the Moxi fault, concentrated left‐lateral strike slip extends ∼30 km along the strike above 10 km depth, producing 0.7–1.0 m shallow slip. Clustered aftershocks and slip inversions suggest that the secondary conjugate Mozigou fault may also involve the rupture. Southward rupture propagation is likely arrested by the barrier‐like fault segments of the Xianshuihe fault, characterized by high interseismic coupling (&gt;0.6) and reduced shear stress rate (&lt;1 kPa/yr) due to interactions with surrounding large locked asperities. The distribution of aftershocks is highly correlated with the positive coseismic Coulomb failure stress changes , which bring the adjacent asperities on the Anninghe and Daliangshan faults ∼0.2 MPa closer to failure. Plain Language Summary The Mw 6.7 Luding earthquake occurred in eastern Tibet on 5 September 2022, causing 93 casualties and 25 people missing, and substantial damage in the epicentral regions. In this study, we derive the static coseismic displacements from Global Positioning System, seismometer and Interferometric Synthetic Aperture Radar observations. We jointly invert these datasets for the coseismic slip distribution. Our results reveal that the coseismic slip is likely distributed on the conjugate Moxi and Mozigou faults, with the primary slip concentrated on the Moxi fault. We compare the coseismic slip with both the interseismic coupling distribution and shear stress rate on the Moxi fault. We find that the southward coseismic rupture termination is spatially coincident with the areas undergoing a low pre‐earthquake shear stress rate and a high interseismic coupling. The comparison suggests that the coseismic slip during the Luding earthquake is likely controlled by pre‐earthquake interactions with surrounding locked zones on the Anninghe and Daliangshan faults (DLS). We calculate the coseismic Coulomb failure stress changes and demonstrate that the aftershocks could be explained by the induced positive stress perturbations. We conclude that the Luding mainshock enhances earthquake hazards on the Anninghe and DLS. Key Points Global Positioning System, seismometer, and Interferometric Synthetic Aperture Radar measurements reveal concentrated coseismic slip extending 30 km on the Moxi fault at 0–10 km depth Interactions with large locked asperities lower the shear stress rate to the south of earthquake and lead to the arrest of coseismic rupture The Luding event brought the Anninghe and Daliangshan faults ∼0.2 MPa closer to failure, representing enhanced earthquake hazard</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2022GL102043</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Aftershocks ; Casualties ; Conjugates ; Coupling ; Distribution ; Earthquake damage ; Earthquakes ; Failure ; Fault lines ; Faults ; Geological faults ; Geological hazards ; Global positioning systems ; GPS ; Interferometric synthetic aperture radar ; Interferometry ; Inversions ; Perturbation ; Positioning systems ; Radar ; Rupture ; SAR (radar) ; Segments ; Seismic activity ; Seismic hazard ; Seismographs ; Seismometers ; Shear stress ; Slip ; Synthetic aperture radar</subject><ispartof>Geophysical research letters, 2022-12, Vol.49 (24), p.n/a</ispartof><rights>2022. The Authors.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3672-d7d94ecb5e032c73ceb86954caa44dbebbfa33579f4bc2aa0f848716f28371d63</citedby><cites>FETCH-LOGICAL-a3672-d7d94ecb5e032c73ceb86954caa44dbebbfa33579f4bc2aa0f848716f28371d63</cites><orcidid>0000-0001-6806-8974 ; 0000-0002-0905-4553 ; 0000-0002-0064-5779 ; 0000-0003-4536-7749 ; 0000-0002-9383-9424</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2022GL102043$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2022GL102043$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1416,1432,11505,27915,27916,45565,45566,46400,46459,46824,46883</link.rule.ids></links><search><creatorcontrib>Li, Yanchuan</creatorcontrib><creatorcontrib>Zhao, Dezheng</creatorcontrib><creatorcontrib>Shan, Xinjian</creatorcontrib><creatorcontrib>Gao, Zhiyu</creatorcontrib><creatorcontrib>Huang, Xing</creatorcontrib><creatorcontrib>Gong, Wenyu</creatorcontrib><title>Coseismic Slip Model of the 2022 Mw 6.7 Luding (Tibet) Earthquake: Pre‐ and Post‐Earthquake Interactions With Surrounding Major Faults</title><title>Geophysical research letters</title><description>The 5 September 2022 Mw 6.7 Luding earthquake occurred on the Moxi segment of the highly active Xianshuihe fault in eastern Tibet. Here, we constrain the coseismic slip by jointly inverting the coseismic displacements measured by Global Positioning System, seismometer and Interferometric Synthetic Aperture Radar. Along the Moxi fault, concentrated left‐lateral strike slip extends ∼30 km along the strike above 10 km depth, producing 0.7–1.0 m shallow slip. Clustered aftershocks and slip inversions suggest that the secondary conjugate Mozigou fault may also involve the rupture. Southward rupture propagation is likely arrested by the barrier‐like fault segments of the Xianshuihe fault, characterized by high interseismic coupling (&gt;0.6) and reduced shear stress rate (&lt;1 kPa/yr) due to interactions with surrounding large locked asperities. The distribution of aftershocks is highly correlated with the positive coseismic Coulomb failure stress changes , which bring the adjacent asperities on the Anninghe and Daliangshan faults ∼0.2 MPa closer to failure. Plain Language Summary The Mw 6.7 Luding earthquake occurred in eastern Tibet on 5 September 2022, causing 93 casualties and 25 people missing, and substantial damage in the epicentral regions. In this study, we derive the static coseismic displacements from Global Positioning System, seismometer and Interferometric Synthetic Aperture Radar observations. We jointly invert these datasets for the coseismic slip distribution. Our results reveal that the coseismic slip is likely distributed on the conjugate Moxi and Mozigou faults, with the primary slip concentrated on the Moxi fault. We compare the coseismic slip with both the interseismic coupling distribution and shear stress rate on the Moxi fault. We find that the southward coseismic rupture termination is spatially coincident with the areas undergoing a low pre‐earthquake shear stress rate and a high interseismic coupling. The comparison suggests that the coseismic slip during the Luding earthquake is likely controlled by pre‐earthquake interactions with surrounding locked zones on the Anninghe and Daliangshan faults (DLS). We calculate the coseismic Coulomb failure stress changes and demonstrate that the aftershocks could be explained by the induced positive stress perturbations. We conclude that the Luding mainshock enhances earthquake hazards on the Anninghe and DLS. Key Points Global Positioning System, seismometer, and Interferometric Synthetic Aperture Radar measurements reveal concentrated coseismic slip extending 30 km on the Moxi fault at 0–10 km depth Interactions with large locked asperities lower the shear stress rate to the south of earthquake and lead to the arrest of coseismic rupture The Luding event brought the Anninghe and Daliangshan faults ∼0.2 MPa closer to failure, representing enhanced earthquake hazard</description><subject>Aftershocks</subject><subject>Casualties</subject><subject>Conjugates</subject><subject>Coupling</subject><subject>Distribution</subject><subject>Earthquake damage</subject><subject>Earthquakes</subject><subject>Failure</subject><subject>Fault lines</subject><subject>Faults</subject><subject>Geological faults</subject><subject>Geological hazards</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Interferometric synthetic aperture radar</subject><subject>Interferometry</subject><subject>Inversions</subject><subject>Perturbation</subject><subject>Positioning systems</subject><subject>Radar</subject><subject>Rupture</subject><subject>SAR (radar)</subject><subject>Segments</subject><subject>Seismic activity</subject><subject>Seismic hazard</subject><subject>Seismographs</subject><subject>Seismometers</subject><subject>Shear stress</subject><subject>Slip</subject><subject>Synthetic aperture radar</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9kEFLwzAYhoMoOKc3f8AHXhTcTJO0ab3J2Oagw-EmHkvapi6za7YkZezm2ZO_0V9i5wQ9efpe-B6eF16Ezj3c9TCJbggmZBg3ETN6gFpexFgnxJgfohbGUZMJD47RibULjDHF1Guh9562UtmlymBaqhWMdS5L0AW4uYSdD8YbCLoc4jpX1QtczlQq3RX0hXHzdS1e5S1MjPx8-wBR5TDR1jX59wujykkjMqd0ZeFZuTlMa2N0XX3rxmKhDQxEXTp7io4KUVp59nPb6GnQn_XuO_HDcNS7izuCBpx0cp5HTGapLzElGaeZTMMg8lkmBGN5KtO0EJT6PCpYmhEhcBGykHtBQULKvTygbXSx966MXtfSumSha1M1lQnhfuOKfOI31PWeyoy21sgiWRm1FGabeDjZrZ38XbvByR7fqFJu_2WT4WMc-CQi9At7YYF6</recordid><startdate>20221228</startdate><enddate>20221228</enddate><creator>Li, Yanchuan</creator><creator>Zhao, Dezheng</creator><creator>Shan, Xinjian</creator><creator>Gao, Zhiyu</creator><creator>Huang, Xing</creator><creator>Gong, Wenyu</creator><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6806-8974</orcidid><orcidid>https://orcid.org/0000-0002-0905-4553</orcidid><orcidid>https://orcid.org/0000-0002-0064-5779</orcidid><orcidid>https://orcid.org/0000-0003-4536-7749</orcidid><orcidid>https://orcid.org/0000-0002-9383-9424</orcidid></search><sort><creationdate>20221228</creationdate><title>Coseismic Slip Model of the 2022 Mw 6.7 Luding (Tibet) Earthquake: Pre‐ and Post‐Earthquake Interactions With Surrounding Major Faults</title><author>Li, Yanchuan ; Zhao, Dezheng ; Shan, Xinjian ; Gao, Zhiyu ; Huang, Xing ; Gong, Wenyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3672-d7d94ecb5e032c73ceb86954caa44dbebbfa33579f4bc2aa0f848716f28371d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aftershocks</topic><topic>Casualties</topic><topic>Conjugates</topic><topic>Coupling</topic><topic>Distribution</topic><topic>Earthquake damage</topic><topic>Earthquakes</topic><topic>Failure</topic><topic>Fault lines</topic><topic>Faults</topic><topic>Geological faults</topic><topic>Geological hazards</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Interferometric synthetic aperture radar</topic><topic>Interferometry</topic><topic>Inversions</topic><topic>Perturbation</topic><topic>Positioning systems</topic><topic>Radar</topic><topic>Rupture</topic><topic>SAR (radar)</topic><topic>Segments</topic><topic>Seismic activity</topic><topic>Seismic hazard</topic><topic>Seismographs</topic><topic>Seismometers</topic><topic>Shear stress</topic><topic>Slip</topic><topic>Synthetic aperture radar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yanchuan</creatorcontrib><creatorcontrib>Zhao, Dezheng</creatorcontrib><creatorcontrib>Shan, Xinjian</creatorcontrib><creatorcontrib>Gao, Zhiyu</creatorcontrib><creatorcontrib>Huang, Xing</creatorcontrib><creatorcontrib>Gong, Wenyu</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yanchuan</au><au>Zhao, Dezheng</au><au>Shan, Xinjian</au><au>Gao, Zhiyu</au><au>Huang, Xing</au><au>Gong, Wenyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coseismic Slip Model of the 2022 Mw 6.7 Luding (Tibet) Earthquake: Pre‐ and Post‐Earthquake Interactions With Surrounding Major Faults</atitle><jtitle>Geophysical research letters</jtitle><date>2022-12-28</date><risdate>2022</risdate><volume>49</volume><issue>24</issue><epage>n/a</epage><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>The 5 September 2022 Mw 6.7 Luding earthquake occurred on the Moxi segment of the highly active Xianshuihe fault in eastern Tibet. Here, we constrain the coseismic slip by jointly inverting the coseismic displacements measured by Global Positioning System, seismometer and Interferometric Synthetic Aperture Radar. Along the Moxi fault, concentrated left‐lateral strike slip extends ∼30 km along the strike above 10 km depth, producing 0.7–1.0 m shallow slip. Clustered aftershocks and slip inversions suggest that the secondary conjugate Mozigou fault may also involve the rupture. Southward rupture propagation is likely arrested by the barrier‐like fault segments of the Xianshuihe fault, characterized by high interseismic coupling (&gt;0.6) and reduced shear stress rate (&lt;1 kPa/yr) due to interactions with surrounding large locked asperities. The distribution of aftershocks is highly correlated with the positive coseismic Coulomb failure stress changes , which bring the adjacent asperities on the Anninghe and Daliangshan faults ∼0.2 MPa closer to failure. Plain Language Summary The Mw 6.7 Luding earthquake occurred in eastern Tibet on 5 September 2022, causing 93 casualties and 25 people missing, and substantial damage in the epicentral regions. In this study, we derive the static coseismic displacements from Global Positioning System, seismometer and Interferometric Synthetic Aperture Radar observations. We jointly invert these datasets for the coseismic slip distribution. Our results reveal that the coseismic slip is likely distributed on the conjugate Moxi and Mozigou faults, with the primary slip concentrated on the Moxi fault. We compare the coseismic slip with both the interseismic coupling distribution and shear stress rate on the Moxi fault. We find that the southward coseismic rupture termination is spatially coincident with the areas undergoing a low pre‐earthquake shear stress rate and a high interseismic coupling. The comparison suggests that the coseismic slip during the Luding earthquake is likely controlled by pre‐earthquake interactions with surrounding locked zones on the Anninghe and Daliangshan faults (DLS). We calculate the coseismic Coulomb failure stress changes and demonstrate that the aftershocks could be explained by the induced positive stress perturbations. We conclude that the Luding mainshock enhances earthquake hazards on the Anninghe and DLS. Key Points Global Positioning System, seismometer, and Interferometric Synthetic Aperture Radar measurements reveal concentrated coseismic slip extending 30 km on the Moxi fault at 0–10 km depth Interactions with large locked asperities lower the shear stress rate to the south of earthquake and lead to the arrest of coseismic rupture The Luding event brought the Anninghe and Daliangshan faults ∼0.2 MPa closer to failure, representing enhanced earthquake hazard</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1029/2022GL102043</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6806-8974</orcidid><orcidid>https://orcid.org/0000-0002-0905-4553</orcidid><orcidid>https://orcid.org/0000-0002-0064-5779</orcidid><orcidid>https://orcid.org/0000-0003-4536-7749</orcidid><orcidid>https://orcid.org/0000-0002-9383-9424</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2022-12, Vol.49 (24), p.n/a
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_journals_2758699525
source Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; Wiley-Blackwell AGU Digital Library; EZB-FREE-00999 freely available EZB journals
subjects Aftershocks
Casualties
Conjugates
Coupling
Distribution
Earthquake damage
Earthquakes
Failure
Fault lines
Faults
Geological faults
Geological hazards
Global positioning systems
GPS
Interferometric synthetic aperture radar
Interferometry
Inversions
Perturbation
Positioning systems
Radar
Rupture
SAR (radar)
Segments
Seismic activity
Seismic hazard
Seismographs
Seismometers
Shear stress
Slip
Synthetic aperture radar
title Coseismic Slip Model of the 2022 Mw 6.7 Luding (Tibet) Earthquake: Pre‐ and Post‐Earthquake Interactions With Surrounding Major Faults
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A54%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coseismic%20Slip%20Model%20of%20the%202022%20Mw%206.7%20Luding%20(Tibet)%20Earthquake:%20Pre%E2%80%90%20and%20Post%E2%80%90Earthquake%20Interactions%20With%20Surrounding%20Major%20Faults&rft.jtitle=Geophysical%20research%20letters&rft.au=Li,%20Yanchuan&rft.date=2022-12-28&rft.volume=49&rft.issue=24&rft.epage=n/a&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1029/2022GL102043&rft_dat=%3Cproquest_cross%3E2758699525%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2758699525&rft_id=info:pmid/&rfr_iscdi=true