Application of machine learning technique for predicting and evaluating chloride ingress in concrete
The degradation of concrete structure in the marine environment is often related to chloride-induced corrosion of reinforcement steel. Therefore, the chloride concentration in concrete is a vital parameter for estimating the corrosion level of reinforcement steel. This research aims at predicting th...
Gespeichert in:
Veröffentlicht in: | Frontiers of Structural and Civil Engineering 2022-09, Vol.16 (9), p.1153-1169 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1169 |
---|---|
container_issue | 9 |
container_start_page | 1153 |
container_title | Frontiers of Structural and Civil Engineering |
container_volume | 16 |
creator | TRAN, Van Quan GIAP, Van Loi VU, Dinh Phien GEORGE, Riya Catherine HO, Lanh Si |
description | The degradation of concrete structure in the marine environment is often related to chloride-induced corrosion of reinforcement steel. Therefore, the chloride concentration in concrete is a vital parameter for estimating the corrosion level of reinforcement steel. This research aims at predicting the chloride content in concrete using three hybrid models of gradient boosting (GB), artificial neural network (ANN), and random forest (RF) in combination with particle swarm optimization (PSO). The input variables for modeling include exposure condition, water/binder ratio ( W/ B), cement content, silica fume, time exposure, and depth of measurement. The results indicate that three models performed well with high accuracy of prediction ( R 2 ≥ 0.90). Among three hybrid models, the model using GB_PSO achieved the highest prediction accuracy ( R 2 = 0.9551, RMSE = 0.0327, and MAE = 0.0181). Based on the results of sensitivity analysis using SHapley Additive exPlanation (SHAP) and partial dependence plots 1D (PDP-1D), it was found that the exposure condition and depth of measurement were the two most vital variables affecting the prediction of chloride content. When the number of different exposure conditions is larger than two, the exposure significantly impacted the chloride content of concrete because the chloride ion ingress is affected by both chemical and physical processes. This study provides an insight into the evaluation and prediction of the chloride content of concrete in the marine environment. |
doi_str_mv | 10.1007/s11709-022-0830-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2758643307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2758643307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-501cc1be6685eb1c29f5681ad7f730bbe405be877950b7ed3111f639870ed7553</originalsourceid><addsrcrecordid>eNp9kE1PxCAQhonRxM26P8AbiefqUEppj5uNX4mJFz0TSqdbNl2o0DXx38tao7c9DRPeZxgeQq4Z3DIAeRcZk1BnkOcZVByy4owscqhFlhdFff535nBJVjHuAICB5Cm6IO16HAdr9GS9o76je21665AOqIOzbksnNL2zHweknQ90DNhaMx0vtGspfurhoH9a0w8-2BZpagLGmCo13pmAE16Ri04PEVe_dUneH-7fNk_Zy-vj82b9khleiikTwIxhDZZlJbBhJq87UVZMt7JL2zYNFiAarKSsBTQSW84Y60peVxKwlULwJbmZ547Bp43jpHb-EFx6UuVSVGXBefr3krA5ZYKPMWCnxmD3OnwpBuroU80-VfKpjj5VkZh8ZmLKui2G_8mnoGqGervtMZkbj2JUF7ybLIZT6DcWfIqv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2758643307</pqid></control><display><type>article</type><title>Application of machine learning technique for predicting and evaluating chloride ingress in concrete</title><source>Springer Nature - Complete Springer Journals</source><creator>TRAN, Van Quan ; GIAP, Van Loi ; VU, Dinh Phien ; GEORGE, Riya Catherine ; HO, Lanh Si</creator><creatorcontrib>TRAN, Van Quan ; GIAP, Van Loi ; VU, Dinh Phien ; GEORGE, Riya Catherine ; HO, Lanh Si</creatorcontrib><description>The degradation of concrete structure in the marine environment is often related to chloride-induced corrosion of reinforcement steel. Therefore, the chloride concentration in concrete is a vital parameter for estimating the corrosion level of reinforcement steel. This research aims at predicting the chloride content in concrete using three hybrid models of gradient boosting (GB), artificial neural network (ANN), and random forest (RF) in combination with particle swarm optimization (PSO). The input variables for modeling include exposure condition, water/binder ratio ( W/ B), cement content, silica fume, time exposure, and depth of measurement. The results indicate that three models performed well with high accuracy of prediction ( R 2 ≥ 0.90). Among three hybrid models, the model using GB_PSO achieved the highest prediction accuracy ( R 2 = 0.9551, RMSE = 0.0327, and MAE = 0.0181). Based on the results of sensitivity analysis using SHapley Additive exPlanation (SHAP) and partial dependence plots 1D (PDP-1D), it was found that the exposure condition and depth of measurement were the two most vital variables affecting the prediction of chloride content. When the number of different exposure conditions is larger than two, the exposure significantly impacted the chloride content of concrete because the chloride ion ingress is affected by both chemical and physical processes. This study provides an insight into the evaluation and prediction of the chloride content of concrete in the marine environment.</description><identifier>ISSN: 2095-2430</identifier><identifier>EISSN: 2095-2449</identifier><identifier>DOI: 10.1007/s11709-022-0830-4</identifier><language>eng</language><publisher>Beijing: Higher Education Press</publisher><subject>Accuracy ; Artificial neural networks ; Chloride ; chloride content ; Chloride ions ; Chlorides ; Cities ; Civil Engineering ; concrete ; Concrete deterioration ; Concrete structures ; Corrosion ; Countries ; Engineering ; Evaluation ; Exposure ; gradient boosting ; Machine learning ; Marine environment ; Neural networks ; Offshore structures ; Parameter estimation ; Particle swarm optimization ; Predictions ; random forest ; Regions ; Reinforcement ; Reinforcing steels ; Research Article ; Sensitivity analysis ; Silica ; Silica fume</subject><ispartof>Frontiers of Structural and Civil Engineering, 2022-09, Vol.16 (9), p.1153-1169</ispartof><rights>Copyright reserved, 2022, Higher Education Press</rights><rights>Higher Education Press 2022</rights><rights>Higher Education Press 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-501cc1be6685eb1c29f5681ad7f730bbe405be877950b7ed3111f639870ed7553</citedby><cites>FETCH-LOGICAL-c365t-501cc1be6685eb1c29f5681ad7f730bbe405be877950b7ed3111f639870ed7553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11709-022-0830-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11709-022-0830-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>TRAN, Van Quan</creatorcontrib><creatorcontrib>GIAP, Van Loi</creatorcontrib><creatorcontrib>VU, Dinh Phien</creatorcontrib><creatorcontrib>GEORGE, Riya Catherine</creatorcontrib><creatorcontrib>HO, Lanh Si</creatorcontrib><title>Application of machine learning technique for predicting and evaluating chloride ingress in concrete</title><title>Frontiers of Structural and Civil Engineering</title><addtitle>Front. Struct. Civ. Eng</addtitle><description>The degradation of concrete structure in the marine environment is often related to chloride-induced corrosion of reinforcement steel. Therefore, the chloride concentration in concrete is a vital parameter for estimating the corrosion level of reinforcement steel. This research aims at predicting the chloride content in concrete using three hybrid models of gradient boosting (GB), artificial neural network (ANN), and random forest (RF) in combination with particle swarm optimization (PSO). The input variables for modeling include exposure condition, water/binder ratio ( W/ B), cement content, silica fume, time exposure, and depth of measurement. The results indicate that three models performed well with high accuracy of prediction ( R 2 ≥ 0.90). Among three hybrid models, the model using GB_PSO achieved the highest prediction accuracy ( R 2 = 0.9551, RMSE = 0.0327, and MAE = 0.0181). Based on the results of sensitivity analysis using SHapley Additive exPlanation (SHAP) and partial dependence plots 1D (PDP-1D), it was found that the exposure condition and depth of measurement were the two most vital variables affecting the prediction of chloride content. When the number of different exposure conditions is larger than two, the exposure significantly impacted the chloride content of concrete because the chloride ion ingress is affected by both chemical and physical processes. This study provides an insight into the evaluation and prediction of the chloride content of concrete in the marine environment.</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Chloride</subject><subject>chloride content</subject><subject>Chloride ions</subject><subject>Chlorides</subject><subject>Cities</subject><subject>Civil Engineering</subject><subject>concrete</subject><subject>Concrete deterioration</subject><subject>Concrete structures</subject><subject>Corrosion</subject><subject>Countries</subject><subject>Engineering</subject><subject>Evaluation</subject><subject>Exposure</subject><subject>gradient boosting</subject><subject>Machine learning</subject><subject>Marine environment</subject><subject>Neural networks</subject><subject>Offshore structures</subject><subject>Parameter estimation</subject><subject>Particle swarm optimization</subject><subject>Predictions</subject><subject>random forest</subject><subject>Regions</subject><subject>Reinforcement</subject><subject>Reinforcing steels</subject><subject>Research Article</subject><subject>Sensitivity analysis</subject><subject>Silica</subject><subject>Silica fume</subject><issn>2095-2430</issn><issn>2095-2449</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PxCAQhonRxM26P8AbiefqUEppj5uNX4mJFz0TSqdbNl2o0DXx38tao7c9DRPeZxgeQq4Z3DIAeRcZk1BnkOcZVByy4owscqhFlhdFff535nBJVjHuAICB5Cm6IO16HAdr9GS9o76je21665AOqIOzbksnNL2zHweknQ90DNhaMx0vtGspfurhoH9a0w8-2BZpagLGmCo13pmAE16Ri04PEVe_dUneH-7fNk_Zy-vj82b9khleiikTwIxhDZZlJbBhJq87UVZMt7JL2zYNFiAarKSsBTQSW84Y60peVxKwlULwJbmZ547Bp43jpHb-EFx6UuVSVGXBefr3krA5ZYKPMWCnxmD3OnwpBuroU80-VfKpjj5VkZh8ZmLKui2G_8mnoGqGervtMZkbj2JUF7ybLIZT6DcWfIqv</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>TRAN, Van Quan</creator><creator>GIAP, Van Loi</creator><creator>VU, Dinh Phien</creator><creator>GEORGE, Riya Catherine</creator><creator>HO, Lanh Si</creator><general>Higher Education Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220901</creationdate><title>Application of machine learning technique for predicting and evaluating chloride ingress in concrete</title><author>TRAN, Van Quan ; GIAP, Van Loi ; VU, Dinh Phien ; GEORGE, Riya Catherine ; HO, Lanh Si</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-501cc1be6685eb1c29f5681ad7f730bbe405be877950b7ed3111f639870ed7553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Chloride</topic><topic>chloride content</topic><topic>Chloride ions</topic><topic>Chlorides</topic><topic>Cities</topic><topic>Civil Engineering</topic><topic>concrete</topic><topic>Concrete deterioration</topic><topic>Concrete structures</topic><topic>Corrosion</topic><topic>Countries</topic><topic>Engineering</topic><topic>Evaluation</topic><topic>Exposure</topic><topic>gradient boosting</topic><topic>Machine learning</topic><topic>Marine environment</topic><topic>Neural networks</topic><topic>Offshore structures</topic><topic>Parameter estimation</topic><topic>Particle swarm optimization</topic><topic>Predictions</topic><topic>random forest</topic><topic>Regions</topic><topic>Reinforcement</topic><topic>Reinforcing steels</topic><topic>Research Article</topic><topic>Sensitivity analysis</topic><topic>Silica</topic><topic>Silica fume</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>TRAN, Van Quan</creatorcontrib><creatorcontrib>GIAP, Van Loi</creatorcontrib><creatorcontrib>VU, Dinh Phien</creatorcontrib><creatorcontrib>GEORGE, Riya Catherine</creatorcontrib><creatorcontrib>HO, Lanh Si</creatorcontrib><collection>CrossRef</collection><jtitle>Frontiers of Structural and Civil Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TRAN, Van Quan</au><au>GIAP, Van Loi</au><au>VU, Dinh Phien</au><au>GEORGE, Riya Catherine</au><au>HO, Lanh Si</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of machine learning technique for predicting and evaluating chloride ingress in concrete</atitle><jtitle>Frontiers of Structural and Civil Engineering</jtitle><stitle>Front. Struct. Civ. Eng</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>16</volume><issue>9</issue><spage>1153</spage><epage>1169</epage><pages>1153-1169</pages><issn>2095-2430</issn><eissn>2095-2449</eissn><abstract>The degradation of concrete structure in the marine environment is often related to chloride-induced corrosion of reinforcement steel. Therefore, the chloride concentration in concrete is a vital parameter for estimating the corrosion level of reinforcement steel. This research aims at predicting the chloride content in concrete using three hybrid models of gradient boosting (GB), artificial neural network (ANN), and random forest (RF) in combination with particle swarm optimization (PSO). The input variables for modeling include exposure condition, water/binder ratio ( W/ B), cement content, silica fume, time exposure, and depth of measurement. The results indicate that three models performed well with high accuracy of prediction ( R 2 ≥ 0.90). Among three hybrid models, the model using GB_PSO achieved the highest prediction accuracy ( R 2 = 0.9551, RMSE = 0.0327, and MAE = 0.0181). Based on the results of sensitivity analysis using SHapley Additive exPlanation (SHAP) and partial dependence plots 1D (PDP-1D), it was found that the exposure condition and depth of measurement were the two most vital variables affecting the prediction of chloride content. When the number of different exposure conditions is larger than two, the exposure significantly impacted the chloride content of concrete because the chloride ion ingress is affected by both chemical and physical processes. This study provides an insight into the evaluation and prediction of the chloride content of concrete in the marine environment.</abstract><cop>Beijing</cop><pub>Higher Education Press</pub><doi>10.1007/s11709-022-0830-4</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2095-2430 |
ispartof | Frontiers of Structural and Civil Engineering, 2022-09, Vol.16 (9), p.1153-1169 |
issn | 2095-2430 2095-2449 |
language | eng |
recordid | cdi_proquest_journals_2758643307 |
source | Springer Nature - Complete Springer Journals |
subjects | Accuracy Artificial neural networks Chloride chloride content Chloride ions Chlorides Cities Civil Engineering concrete Concrete deterioration Concrete structures Corrosion Countries Engineering Evaluation Exposure gradient boosting Machine learning Marine environment Neural networks Offshore structures Parameter estimation Particle swarm optimization Predictions random forest Regions Reinforcement Reinforcing steels Research Article Sensitivity analysis Silica Silica fume |
title | Application of machine learning technique for predicting and evaluating chloride ingress in concrete |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T21%3A41%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20machine%20learning%20technique%20for%20predicting%20and%20evaluating%20chloride%20ingress%20in%20concrete&rft.jtitle=Frontiers%20of%20Structural%20and%20Civil%20Engineering&rft.au=TRAN,%20Van%20Quan&rft.date=2022-09-01&rft.volume=16&rft.issue=9&rft.spage=1153&rft.epage=1169&rft.pages=1153-1169&rft.issn=2095-2430&rft.eissn=2095-2449&rft_id=info:doi/10.1007/s11709-022-0830-4&rft_dat=%3Cproquest_cross%3E2758643307%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2758643307&rft_id=info:pmid/&rfr_iscdi=true |