Application of machine learning technique for predicting and evaluating chloride ingress in concrete

The degradation of concrete structure in the marine environment is often related to chloride-induced corrosion of reinforcement steel. Therefore, the chloride concentration in concrete is a vital parameter for estimating the corrosion level of reinforcement steel. This research aims at predicting th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers of Structural and Civil Engineering 2022-09, Vol.16 (9), p.1153-1169
Hauptverfasser: TRAN, Van Quan, GIAP, Van Loi, VU, Dinh Phien, GEORGE, Riya Catherine, HO, Lanh Si
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1169
container_issue 9
container_start_page 1153
container_title Frontiers of Structural and Civil Engineering
container_volume 16
creator TRAN, Van Quan
GIAP, Van Loi
VU, Dinh Phien
GEORGE, Riya Catherine
HO, Lanh Si
description The degradation of concrete structure in the marine environment is often related to chloride-induced corrosion of reinforcement steel. Therefore, the chloride concentration in concrete is a vital parameter for estimating the corrosion level of reinforcement steel. This research aims at predicting the chloride content in concrete using three hybrid models of gradient boosting (GB), artificial neural network (ANN), and random forest (RF) in combination with particle swarm optimization (PSO). The input variables for modeling include exposure condition, water/binder ratio ( W/ B), cement content, silica fume, time exposure, and depth of measurement. The results indicate that three models performed well with high accuracy of prediction ( R 2 ≥ 0.90). Among three hybrid models, the model using GB_PSO achieved the highest prediction accuracy ( R 2 = 0.9551, RMSE = 0.0327, and MAE = 0.0181). Based on the results of sensitivity analysis using SHapley Additive exPlanation (SHAP) and partial dependence plots 1D (PDP-1D), it was found that the exposure condition and depth of measurement were the two most vital variables affecting the prediction of chloride content. When the number of different exposure conditions is larger than two, the exposure significantly impacted the chloride content of concrete because the chloride ion ingress is affected by both chemical and physical processes. This study provides an insight into the evaluation and prediction of the chloride content of concrete in the marine environment.
doi_str_mv 10.1007/s11709-022-0830-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2758643307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2758643307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-501cc1be6685eb1c29f5681ad7f730bbe405be877950b7ed3111f639870ed7553</originalsourceid><addsrcrecordid>eNp9kE1PxCAQhonRxM26P8AbiefqUEppj5uNX4mJFz0TSqdbNl2o0DXx38tao7c9DRPeZxgeQq4Z3DIAeRcZk1BnkOcZVByy4owscqhFlhdFff535nBJVjHuAICB5Cm6IO16HAdr9GS9o76je21665AOqIOzbksnNL2zHweknQ90DNhaMx0vtGspfurhoH9a0w8-2BZpagLGmCo13pmAE16Ri04PEVe_dUneH-7fNk_Zy-vj82b9khleiikTwIxhDZZlJbBhJq87UVZMt7JL2zYNFiAarKSsBTQSW84Y60peVxKwlULwJbmZ547Bp43jpHb-EFx6UuVSVGXBefr3krA5ZYKPMWCnxmD3OnwpBuroU80-VfKpjj5VkZh8ZmLKui2G_8mnoGqGervtMZkbj2JUF7ybLIZT6DcWfIqv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2758643307</pqid></control><display><type>article</type><title>Application of machine learning technique for predicting and evaluating chloride ingress in concrete</title><source>Springer Nature - Complete Springer Journals</source><creator>TRAN, Van Quan ; GIAP, Van Loi ; VU, Dinh Phien ; GEORGE, Riya Catherine ; HO, Lanh Si</creator><creatorcontrib>TRAN, Van Quan ; GIAP, Van Loi ; VU, Dinh Phien ; GEORGE, Riya Catherine ; HO, Lanh Si</creatorcontrib><description>The degradation of concrete structure in the marine environment is often related to chloride-induced corrosion of reinforcement steel. Therefore, the chloride concentration in concrete is a vital parameter for estimating the corrosion level of reinforcement steel. This research aims at predicting the chloride content in concrete using three hybrid models of gradient boosting (GB), artificial neural network (ANN), and random forest (RF) in combination with particle swarm optimization (PSO). The input variables for modeling include exposure condition, water/binder ratio ( W/ B), cement content, silica fume, time exposure, and depth of measurement. The results indicate that three models performed well with high accuracy of prediction ( R 2 ≥ 0.90). Among three hybrid models, the model using GB_PSO achieved the highest prediction accuracy ( R 2 = 0.9551, RMSE = 0.0327, and MAE = 0.0181). Based on the results of sensitivity analysis using SHapley Additive exPlanation (SHAP) and partial dependence plots 1D (PDP-1D), it was found that the exposure condition and depth of measurement were the two most vital variables affecting the prediction of chloride content. When the number of different exposure conditions is larger than two, the exposure significantly impacted the chloride content of concrete because the chloride ion ingress is affected by both chemical and physical processes. This study provides an insight into the evaluation and prediction of the chloride content of concrete in the marine environment.</description><identifier>ISSN: 2095-2430</identifier><identifier>EISSN: 2095-2449</identifier><identifier>DOI: 10.1007/s11709-022-0830-4</identifier><language>eng</language><publisher>Beijing: Higher Education Press</publisher><subject>Accuracy ; Artificial neural networks ; Chloride ; chloride content ; Chloride ions ; Chlorides ; Cities ; Civil Engineering ; concrete ; Concrete deterioration ; Concrete structures ; Corrosion ; Countries ; Engineering ; Evaluation ; Exposure ; gradient boosting ; Machine learning ; Marine environment ; Neural networks ; Offshore structures ; Parameter estimation ; Particle swarm optimization ; Predictions ; random forest ; Regions ; Reinforcement ; Reinforcing steels ; Research Article ; Sensitivity analysis ; Silica ; Silica fume</subject><ispartof>Frontiers of Structural and Civil Engineering, 2022-09, Vol.16 (9), p.1153-1169</ispartof><rights>Copyright reserved, 2022, Higher Education Press</rights><rights>Higher Education Press 2022</rights><rights>Higher Education Press 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-501cc1be6685eb1c29f5681ad7f730bbe405be877950b7ed3111f639870ed7553</citedby><cites>FETCH-LOGICAL-c365t-501cc1be6685eb1c29f5681ad7f730bbe405be877950b7ed3111f639870ed7553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11709-022-0830-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11709-022-0830-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>TRAN, Van Quan</creatorcontrib><creatorcontrib>GIAP, Van Loi</creatorcontrib><creatorcontrib>VU, Dinh Phien</creatorcontrib><creatorcontrib>GEORGE, Riya Catherine</creatorcontrib><creatorcontrib>HO, Lanh Si</creatorcontrib><title>Application of machine learning technique for predicting and evaluating chloride ingress in concrete</title><title>Frontiers of Structural and Civil Engineering</title><addtitle>Front. Struct. Civ. Eng</addtitle><description>The degradation of concrete structure in the marine environment is often related to chloride-induced corrosion of reinforcement steel. Therefore, the chloride concentration in concrete is a vital parameter for estimating the corrosion level of reinforcement steel. This research aims at predicting the chloride content in concrete using three hybrid models of gradient boosting (GB), artificial neural network (ANN), and random forest (RF) in combination with particle swarm optimization (PSO). The input variables for modeling include exposure condition, water/binder ratio ( W/ B), cement content, silica fume, time exposure, and depth of measurement. The results indicate that three models performed well with high accuracy of prediction ( R 2 ≥ 0.90). Among three hybrid models, the model using GB_PSO achieved the highest prediction accuracy ( R 2 = 0.9551, RMSE = 0.0327, and MAE = 0.0181). Based on the results of sensitivity analysis using SHapley Additive exPlanation (SHAP) and partial dependence plots 1D (PDP-1D), it was found that the exposure condition and depth of measurement were the two most vital variables affecting the prediction of chloride content. When the number of different exposure conditions is larger than two, the exposure significantly impacted the chloride content of concrete because the chloride ion ingress is affected by both chemical and physical processes. This study provides an insight into the evaluation and prediction of the chloride content of concrete in the marine environment.</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Chloride</subject><subject>chloride content</subject><subject>Chloride ions</subject><subject>Chlorides</subject><subject>Cities</subject><subject>Civil Engineering</subject><subject>concrete</subject><subject>Concrete deterioration</subject><subject>Concrete structures</subject><subject>Corrosion</subject><subject>Countries</subject><subject>Engineering</subject><subject>Evaluation</subject><subject>Exposure</subject><subject>gradient boosting</subject><subject>Machine learning</subject><subject>Marine environment</subject><subject>Neural networks</subject><subject>Offshore structures</subject><subject>Parameter estimation</subject><subject>Particle swarm optimization</subject><subject>Predictions</subject><subject>random forest</subject><subject>Regions</subject><subject>Reinforcement</subject><subject>Reinforcing steels</subject><subject>Research Article</subject><subject>Sensitivity analysis</subject><subject>Silica</subject><subject>Silica fume</subject><issn>2095-2430</issn><issn>2095-2449</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PxCAQhonRxM26P8AbiefqUEppj5uNX4mJFz0TSqdbNl2o0DXx38tao7c9DRPeZxgeQq4Z3DIAeRcZk1BnkOcZVByy4owscqhFlhdFff535nBJVjHuAICB5Cm6IO16HAdr9GS9o76je21665AOqIOzbksnNL2zHweknQ90DNhaMx0vtGspfurhoH9a0w8-2BZpagLGmCo13pmAE16Ri04PEVe_dUneH-7fNk_Zy-vj82b9khleiikTwIxhDZZlJbBhJq87UVZMt7JL2zYNFiAarKSsBTQSW84Y60peVxKwlULwJbmZ547Bp43jpHb-EFx6UuVSVGXBefr3krA5ZYKPMWCnxmD3OnwpBuroU80-VfKpjj5VkZh8ZmLKui2G_8mnoGqGervtMZkbj2JUF7ybLIZT6DcWfIqv</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>TRAN, Van Quan</creator><creator>GIAP, Van Loi</creator><creator>VU, Dinh Phien</creator><creator>GEORGE, Riya Catherine</creator><creator>HO, Lanh Si</creator><general>Higher Education Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220901</creationdate><title>Application of machine learning technique for predicting and evaluating chloride ingress in concrete</title><author>TRAN, Van Quan ; GIAP, Van Loi ; VU, Dinh Phien ; GEORGE, Riya Catherine ; HO, Lanh Si</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-501cc1be6685eb1c29f5681ad7f730bbe405be877950b7ed3111f639870ed7553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Chloride</topic><topic>chloride content</topic><topic>Chloride ions</topic><topic>Chlorides</topic><topic>Cities</topic><topic>Civil Engineering</topic><topic>concrete</topic><topic>Concrete deterioration</topic><topic>Concrete structures</topic><topic>Corrosion</topic><topic>Countries</topic><topic>Engineering</topic><topic>Evaluation</topic><topic>Exposure</topic><topic>gradient boosting</topic><topic>Machine learning</topic><topic>Marine environment</topic><topic>Neural networks</topic><topic>Offshore structures</topic><topic>Parameter estimation</topic><topic>Particle swarm optimization</topic><topic>Predictions</topic><topic>random forest</topic><topic>Regions</topic><topic>Reinforcement</topic><topic>Reinforcing steels</topic><topic>Research Article</topic><topic>Sensitivity analysis</topic><topic>Silica</topic><topic>Silica fume</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>TRAN, Van Quan</creatorcontrib><creatorcontrib>GIAP, Van Loi</creatorcontrib><creatorcontrib>VU, Dinh Phien</creatorcontrib><creatorcontrib>GEORGE, Riya Catherine</creatorcontrib><creatorcontrib>HO, Lanh Si</creatorcontrib><collection>CrossRef</collection><jtitle>Frontiers of Structural and Civil Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TRAN, Van Quan</au><au>GIAP, Van Loi</au><au>VU, Dinh Phien</au><au>GEORGE, Riya Catherine</au><au>HO, Lanh Si</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of machine learning technique for predicting and evaluating chloride ingress in concrete</atitle><jtitle>Frontiers of Structural and Civil Engineering</jtitle><stitle>Front. Struct. Civ. Eng</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>16</volume><issue>9</issue><spage>1153</spage><epage>1169</epage><pages>1153-1169</pages><issn>2095-2430</issn><eissn>2095-2449</eissn><abstract>The degradation of concrete structure in the marine environment is often related to chloride-induced corrosion of reinforcement steel. Therefore, the chloride concentration in concrete is a vital parameter for estimating the corrosion level of reinforcement steel. This research aims at predicting the chloride content in concrete using three hybrid models of gradient boosting (GB), artificial neural network (ANN), and random forest (RF) in combination with particle swarm optimization (PSO). The input variables for modeling include exposure condition, water/binder ratio ( W/ B), cement content, silica fume, time exposure, and depth of measurement. The results indicate that three models performed well with high accuracy of prediction ( R 2 ≥ 0.90). Among three hybrid models, the model using GB_PSO achieved the highest prediction accuracy ( R 2 = 0.9551, RMSE = 0.0327, and MAE = 0.0181). Based on the results of sensitivity analysis using SHapley Additive exPlanation (SHAP) and partial dependence plots 1D (PDP-1D), it was found that the exposure condition and depth of measurement were the two most vital variables affecting the prediction of chloride content. When the number of different exposure conditions is larger than two, the exposure significantly impacted the chloride content of concrete because the chloride ion ingress is affected by both chemical and physical processes. This study provides an insight into the evaluation and prediction of the chloride content of concrete in the marine environment.</abstract><cop>Beijing</cop><pub>Higher Education Press</pub><doi>10.1007/s11709-022-0830-4</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2095-2430
ispartof Frontiers of Structural and Civil Engineering, 2022-09, Vol.16 (9), p.1153-1169
issn 2095-2430
2095-2449
language eng
recordid cdi_proquest_journals_2758643307
source Springer Nature - Complete Springer Journals
subjects Accuracy
Artificial neural networks
Chloride
chloride content
Chloride ions
Chlorides
Cities
Civil Engineering
concrete
Concrete deterioration
Concrete structures
Corrosion
Countries
Engineering
Evaluation
Exposure
gradient boosting
Machine learning
Marine environment
Neural networks
Offshore structures
Parameter estimation
Particle swarm optimization
Predictions
random forest
Regions
Reinforcement
Reinforcing steels
Research Article
Sensitivity analysis
Silica
Silica fume
title Application of machine learning technique for predicting and evaluating chloride ingress in concrete
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T21%3A41%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20machine%20learning%20technique%20for%20predicting%20and%20evaluating%20chloride%20ingress%20in%20concrete&rft.jtitle=Frontiers%20of%20Structural%20and%20Civil%20Engineering&rft.au=TRAN,%20Van%20Quan&rft.date=2022-09-01&rft.volume=16&rft.issue=9&rft.spage=1153&rft.epage=1169&rft.pages=1153-1169&rft.issn=2095-2430&rft.eissn=2095-2449&rft_id=info:doi/10.1007/s11709-022-0830-4&rft_dat=%3Cproquest_cross%3E2758643307%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2758643307&rft_id=info:pmid/&rfr_iscdi=true