Pre‐combustion carbon dioxide capture: A thermo‐economic comparison for dual‐stage Selexol process and combined Sulfinol‐Selexol process

Summary The emission of greenhouse gases from fossil‐fueled power plants is a major concern in power generation sector. Carbon dioxide (CO2) emissions constitute the major portion of the greenhouse gases. Among several opportunities available to reduce CO2, carbon capture and sequestration (CCS) is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of energy research 2022-12, Vol.46 (15), p.23775-23795
Hauptverfasser: Ramzan, Neelam, Rizwan, Muhammad, Zaman, Muhammad, Adnan, Muhammad, Ullah, Atta, Gungor, Afsin, Shakeel, Usama, Haq, Azhar ul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23795
container_issue 15
container_start_page 23775
container_title International journal of energy research
container_volume 46
creator Ramzan, Neelam
Rizwan, Muhammad
Zaman, Muhammad
Adnan, Muhammad
Ullah, Atta
Gungor, Afsin
Shakeel, Usama
Haq, Azhar ul
description Summary The emission of greenhouse gases from fossil‐fueled power plants is a major concern in power generation sector. Carbon dioxide (CO2) emissions constitute the major portion of the greenhouse gases. Among several opportunities available to reduce CO2, carbon capture and sequestration (CCS) is considered to be a possible option for CO2 mitigation. However, implementation of CCS increases the cost of power generation significantly. The main effort of this study is to explore the technical and economic aspects of a dual‐stage Selexol process and a proposed process named combined Sulfinol‐Selexol process, for pre‐combustion capture. The combined CO2 capture process utilizes Sulfinol‐M solvent‐based process for the selective capture of hydrogen sulfide and dimethyl ether of polyethylene glycol solvent‐based Selexol process for CO2 capture. The performance of both processes is assessed and compared in terms of energy consumptions, operating cost, and capital cost by simulating in Aspen HYSYS V.11. Sensitivity analysis for lean solvent inlet temperature, pressures of multi‐flash system and number of stages of the absorption columns is performed to improve both processes. The proposed combined process is 5.8% more economical than the baseline dual‐stage Selexol process as well as its overall process is simpler. However, after sensitivity analysis, both processes improved, and the dual‐stage Selexol process is found to be 3.31% more economical than the combined Sulfinol‐Selexol process. This study compares and optimizes the dual‐stage Selexol process (DSSP) and a new process configuration named combined Sulfinol‐Selexol process (CSSP) for capturing 99.9% H2S and 90% CO2 from IGCC Power Plant. Results show that the base case of CSSP is more economical than DSSP, while optimized DSSP is more cost effective than CSSP. Optimization of key operating parameters resulted in 25.63% and 18.34% savings in terms of total annual cost for DSSP and CSSP, respectively.
doi_str_mv 10.1002/er.8674
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2758637707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2758637707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3224-d8fee4102b529488a8207806c699302b56fabeb24dd15da31b5efec010629a9b3</originalsourceid><addsrcrecordid>eNp10M1KAzEQAOAgCtYqvkLAgwfZmmT_vRWpP1BQrEJvIZvMasruZk12sb35CH1Gn8Ss9SR4GmbmmxkYhE4pmVBC2CXYSZak0R4aUZLnAaXRch-NSJiEQU7S5SE6cm5FiO_RdIS2jxa-PrfS1EXvOm0aLIUtfFDarLUCn7Zdb-EKT3H3BrY2XoM0jam1xH6sFVY770tjsepF5duuE6-AF1DB2lS4tUaCc1g0avCFbkDhRV-VujGD_uOO0UEpKgcnv3GMXm5mz9d3wfzh9v56Og9kyFgUqKwEiChhRczyKMtExkiakUQmeR4O1aQUBRQsUorGSoS0iKEESShJWC7yIhyjs91ef_e9B9fxlelt409ylsZZEqYpSb063ylpjXMWSt5aXQu74ZTw4d0cLB_e7eXFTn7oCjb_MT57-tHfdQWG8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2758637707</pqid></control><display><type>article</type><title>Pre‐combustion carbon dioxide capture: A thermo‐economic comparison for dual‐stage Selexol process and combined Sulfinol‐Selexol process</title><source>Access via Wiley Online Library</source><creator>Ramzan, Neelam ; Rizwan, Muhammad ; Zaman, Muhammad ; Adnan, Muhammad ; Ullah, Atta ; Gungor, Afsin ; Shakeel, Usama ; Haq, Azhar ul</creator><creatorcontrib>Ramzan, Neelam ; Rizwan, Muhammad ; Zaman, Muhammad ; Adnan, Muhammad ; Ullah, Atta ; Gungor, Afsin ; Shakeel, Usama ; Haq, Azhar ul</creatorcontrib><description>Summary The emission of greenhouse gases from fossil‐fueled power plants is a major concern in power generation sector. Carbon dioxide (CO2) emissions constitute the major portion of the greenhouse gases. Among several opportunities available to reduce CO2, carbon capture and sequestration (CCS) is considered to be a possible option for CO2 mitigation. However, implementation of CCS increases the cost of power generation significantly. The main effort of this study is to explore the technical and economic aspects of a dual‐stage Selexol process and a proposed process named combined Sulfinol‐Selexol process, for pre‐combustion capture. The combined CO2 capture process utilizes Sulfinol‐M solvent‐based process for the selective capture of hydrogen sulfide and dimethyl ether of polyethylene glycol solvent‐based Selexol process for CO2 capture. The performance of both processes is assessed and compared in terms of energy consumptions, operating cost, and capital cost by simulating in Aspen HYSYS V.11. Sensitivity analysis for lean solvent inlet temperature, pressures of multi‐flash system and number of stages of the absorption columns is performed to improve both processes. The proposed combined process is 5.8% more economical than the baseline dual‐stage Selexol process as well as its overall process is simpler. However, after sensitivity analysis, both processes improved, and the dual‐stage Selexol process is found to be 3.31% more economical than the combined Sulfinol‐Selexol process. This study compares and optimizes the dual‐stage Selexol process (DSSP) and a new process configuration named combined Sulfinol‐Selexol process (CSSP) for capturing 99.9% H2S and 90% CO2 from IGCC Power Plant. Results show that the base case of CSSP is more economical than DSSP, while optimized DSSP is more cost effective than CSSP. Optimization of key operating parameters resulted in 25.63% and 18.34% savings in terms of total annual cost for DSSP and CSSP, respectively.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1002/er.8674</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Inc</publisher><subject>Capital costs ; carbon capture ; Carbon capture and storage ; Carbon dioxide ; Carbon dioxide emissions ; Carbon sequestration ; Combustion ; Cost analysis ; Dimethyl ether ; Economics ; Electric power generation ; Emissions ; Fossil fuels ; Fossils ; Gases ; Greenhouse effect ; Greenhouse gases ; Hydrogen sulfide ; Hydrogen sulphide ; Inlet temperature ; Mitigation ; Operating costs ; physical solvent ; Polyethylene glycol ; Power plants ; Selexol process ; Sensitivity analysis ; Solvents ; Sulfinol process ; Sulphides ; thermo‐economic analysis</subject><ispartof>International journal of energy research, 2022-12, Vol.46 (15), p.23775-23795</ispartof><rights>2022 John Wiley &amp; Sons Ltd.</rights><rights>2022 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3224-d8fee4102b529488a8207806c699302b56fabeb24dd15da31b5efec010629a9b3</citedby><cites>FETCH-LOGICAL-c3224-d8fee4102b529488a8207806c699302b56fabeb24dd15da31b5efec010629a9b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fer.8674$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fer.8674$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Ramzan, Neelam</creatorcontrib><creatorcontrib>Rizwan, Muhammad</creatorcontrib><creatorcontrib>Zaman, Muhammad</creatorcontrib><creatorcontrib>Adnan, Muhammad</creatorcontrib><creatorcontrib>Ullah, Atta</creatorcontrib><creatorcontrib>Gungor, Afsin</creatorcontrib><creatorcontrib>Shakeel, Usama</creatorcontrib><creatorcontrib>Haq, Azhar ul</creatorcontrib><title>Pre‐combustion carbon dioxide capture: A thermo‐economic comparison for dual‐stage Selexol process and combined Sulfinol‐Selexol process</title><title>International journal of energy research</title><description>Summary The emission of greenhouse gases from fossil‐fueled power plants is a major concern in power generation sector. Carbon dioxide (CO2) emissions constitute the major portion of the greenhouse gases. Among several opportunities available to reduce CO2, carbon capture and sequestration (CCS) is considered to be a possible option for CO2 mitigation. However, implementation of CCS increases the cost of power generation significantly. The main effort of this study is to explore the technical and economic aspects of a dual‐stage Selexol process and a proposed process named combined Sulfinol‐Selexol process, for pre‐combustion capture. The combined CO2 capture process utilizes Sulfinol‐M solvent‐based process for the selective capture of hydrogen sulfide and dimethyl ether of polyethylene glycol solvent‐based Selexol process for CO2 capture. The performance of both processes is assessed and compared in terms of energy consumptions, operating cost, and capital cost by simulating in Aspen HYSYS V.11. Sensitivity analysis for lean solvent inlet temperature, pressures of multi‐flash system and number of stages of the absorption columns is performed to improve both processes. The proposed combined process is 5.8% more economical than the baseline dual‐stage Selexol process as well as its overall process is simpler. However, after sensitivity analysis, both processes improved, and the dual‐stage Selexol process is found to be 3.31% more economical than the combined Sulfinol‐Selexol process. This study compares and optimizes the dual‐stage Selexol process (DSSP) and a new process configuration named combined Sulfinol‐Selexol process (CSSP) for capturing 99.9% H2S and 90% CO2 from IGCC Power Plant. Results show that the base case of CSSP is more economical than DSSP, while optimized DSSP is more cost effective than CSSP. Optimization of key operating parameters resulted in 25.63% and 18.34% savings in terms of total annual cost for DSSP and CSSP, respectively.</description><subject>Capital costs</subject><subject>carbon capture</subject><subject>Carbon capture and storage</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide emissions</subject><subject>Carbon sequestration</subject><subject>Combustion</subject><subject>Cost analysis</subject><subject>Dimethyl ether</subject><subject>Economics</subject><subject>Electric power generation</subject><subject>Emissions</subject><subject>Fossil fuels</subject><subject>Fossils</subject><subject>Gases</subject><subject>Greenhouse effect</subject><subject>Greenhouse gases</subject><subject>Hydrogen sulfide</subject><subject>Hydrogen sulphide</subject><subject>Inlet temperature</subject><subject>Mitigation</subject><subject>Operating costs</subject><subject>physical solvent</subject><subject>Polyethylene glycol</subject><subject>Power plants</subject><subject>Selexol process</subject><subject>Sensitivity analysis</subject><subject>Solvents</subject><subject>Sulfinol process</subject><subject>Sulphides</subject><subject>thermo‐economic analysis</subject><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp10M1KAzEQAOAgCtYqvkLAgwfZmmT_vRWpP1BQrEJvIZvMasruZk12sb35CH1Gn8Ss9SR4GmbmmxkYhE4pmVBC2CXYSZak0R4aUZLnAaXRch-NSJiEQU7S5SE6cm5FiO_RdIS2jxa-PrfS1EXvOm0aLIUtfFDarLUCn7Zdb-EKT3H3BrY2XoM0jam1xH6sFVY770tjsepF5duuE6-AF1DB2lS4tUaCc1g0avCFbkDhRV-VujGD_uOO0UEpKgcnv3GMXm5mz9d3wfzh9v56Og9kyFgUqKwEiChhRczyKMtExkiakUQmeR4O1aQUBRQsUorGSoS0iKEESShJWC7yIhyjs91ef_e9B9fxlelt409ylsZZEqYpSb063ylpjXMWSt5aXQu74ZTw4d0cLB_e7eXFTn7oCjb_MT57-tHfdQWG8w</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Ramzan, Neelam</creator><creator>Rizwan, Muhammad</creator><creator>Zaman, Muhammad</creator><creator>Adnan, Muhammad</creator><creator>Ullah, Atta</creator><creator>Gungor, Afsin</creator><creator>Shakeel, Usama</creator><creator>Haq, Azhar ul</creator><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>202212</creationdate><title>Pre‐combustion carbon dioxide capture: A thermo‐economic comparison for dual‐stage Selexol process and combined Sulfinol‐Selexol process</title><author>Ramzan, Neelam ; Rizwan, Muhammad ; Zaman, Muhammad ; Adnan, Muhammad ; Ullah, Atta ; Gungor, Afsin ; Shakeel, Usama ; Haq, Azhar ul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3224-d8fee4102b529488a8207806c699302b56fabeb24dd15da31b5efec010629a9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Capital costs</topic><topic>carbon capture</topic><topic>Carbon capture and storage</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide emissions</topic><topic>Carbon sequestration</topic><topic>Combustion</topic><topic>Cost analysis</topic><topic>Dimethyl ether</topic><topic>Economics</topic><topic>Electric power generation</topic><topic>Emissions</topic><topic>Fossil fuels</topic><topic>Fossils</topic><topic>Gases</topic><topic>Greenhouse effect</topic><topic>Greenhouse gases</topic><topic>Hydrogen sulfide</topic><topic>Hydrogen sulphide</topic><topic>Inlet temperature</topic><topic>Mitigation</topic><topic>Operating costs</topic><topic>physical solvent</topic><topic>Polyethylene glycol</topic><topic>Power plants</topic><topic>Selexol process</topic><topic>Sensitivity analysis</topic><topic>Solvents</topic><topic>Sulfinol process</topic><topic>Sulphides</topic><topic>thermo‐economic analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramzan, Neelam</creatorcontrib><creatorcontrib>Rizwan, Muhammad</creatorcontrib><creatorcontrib>Zaman, Muhammad</creatorcontrib><creatorcontrib>Adnan, Muhammad</creatorcontrib><creatorcontrib>Ullah, Atta</creatorcontrib><creatorcontrib>Gungor, Afsin</creatorcontrib><creatorcontrib>Shakeel, Usama</creatorcontrib><creatorcontrib>Haq, Azhar ul</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>International journal of energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramzan, Neelam</au><au>Rizwan, Muhammad</au><au>Zaman, Muhammad</au><au>Adnan, Muhammad</au><au>Ullah, Atta</au><au>Gungor, Afsin</au><au>Shakeel, Usama</au><au>Haq, Azhar ul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pre‐combustion carbon dioxide capture: A thermo‐economic comparison for dual‐stage Selexol process and combined Sulfinol‐Selexol process</atitle><jtitle>International journal of energy research</jtitle><date>2022-12</date><risdate>2022</risdate><volume>46</volume><issue>15</issue><spage>23775</spage><epage>23795</epage><pages>23775-23795</pages><issn>0363-907X</issn><eissn>1099-114X</eissn><abstract>Summary The emission of greenhouse gases from fossil‐fueled power plants is a major concern in power generation sector. Carbon dioxide (CO2) emissions constitute the major portion of the greenhouse gases. Among several opportunities available to reduce CO2, carbon capture and sequestration (CCS) is considered to be a possible option for CO2 mitigation. However, implementation of CCS increases the cost of power generation significantly. The main effort of this study is to explore the technical and economic aspects of a dual‐stage Selexol process and a proposed process named combined Sulfinol‐Selexol process, for pre‐combustion capture. The combined CO2 capture process utilizes Sulfinol‐M solvent‐based process for the selective capture of hydrogen sulfide and dimethyl ether of polyethylene glycol solvent‐based Selexol process for CO2 capture. The performance of both processes is assessed and compared in terms of energy consumptions, operating cost, and capital cost by simulating in Aspen HYSYS V.11. Sensitivity analysis for lean solvent inlet temperature, pressures of multi‐flash system and number of stages of the absorption columns is performed to improve both processes. The proposed combined process is 5.8% more economical than the baseline dual‐stage Selexol process as well as its overall process is simpler. However, after sensitivity analysis, both processes improved, and the dual‐stage Selexol process is found to be 3.31% more economical than the combined Sulfinol‐Selexol process. This study compares and optimizes the dual‐stage Selexol process (DSSP) and a new process configuration named combined Sulfinol‐Selexol process (CSSP) for capturing 99.9% H2S and 90% CO2 from IGCC Power Plant. Results show that the base case of CSSP is more economical than DSSP, while optimized DSSP is more cost effective than CSSP. Optimization of key operating parameters resulted in 25.63% and 18.34% savings in terms of total annual cost for DSSP and CSSP, respectively.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/er.8674</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0363-907X
ispartof International journal of energy research, 2022-12, Vol.46 (15), p.23775-23795
issn 0363-907X
1099-114X
language eng
recordid cdi_proquest_journals_2758637707
source Access via Wiley Online Library
subjects Capital costs
carbon capture
Carbon capture and storage
Carbon dioxide
Carbon dioxide emissions
Carbon sequestration
Combustion
Cost analysis
Dimethyl ether
Economics
Electric power generation
Emissions
Fossil fuels
Fossils
Gases
Greenhouse effect
Greenhouse gases
Hydrogen sulfide
Hydrogen sulphide
Inlet temperature
Mitigation
Operating costs
physical solvent
Polyethylene glycol
Power plants
Selexol process
Sensitivity analysis
Solvents
Sulfinol process
Sulphides
thermo‐economic analysis
title Pre‐combustion carbon dioxide capture: A thermo‐economic comparison for dual‐stage Selexol process and combined Sulfinol‐Selexol process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T23%3A14%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pre%E2%80%90combustion%20carbon%20dioxide%20capture:%20A%20thermo%E2%80%90economic%20comparison%20for%20dual%E2%80%90stage%20Selexol%20process%20and%20combined%20Sulfinol%E2%80%90Selexol%20process&rft.jtitle=International%20journal%20of%20energy%20research&rft.au=Ramzan,%20Neelam&rft.date=2022-12&rft.volume=46&rft.issue=15&rft.spage=23775&rft.epage=23795&rft.pages=23775-23795&rft.issn=0363-907X&rft.eissn=1099-114X&rft_id=info:doi/10.1002/er.8674&rft_dat=%3Cproquest_cross%3E2758637707%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2758637707&rft_id=info:pmid/&rfr_iscdi=true