Pre‐combustion carbon dioxide capture: A thermo‐economic comparison for dual‐stage Selexol process and combined Sulfinol‐Selexol process
Summary The emission of greenhouse gases from fossil‐fueled power plants is a major concern in power generation sector. Carbon dioxide (CO2) emissions constitute the major portion of the greenhouse gases. Among several opportunities available to reduce CO2, carbon capture and sequestration (CCS) is...
Gespeichert in:
Veröffentlicht in: | International journal of energy research 2022-12, Vol.46 (15), p.23775-23795 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 23795 |
---|---|
container_issue | 15 |
container_start_page | 23775 |
container_title | International journal of energy research |
container_volume | 46 |
creator | Ramzan, Neelam Rizwan, Muhammad Zaman, Muhammad Adnan, Muhammad Ullah, Atta Gungor, Afsin Shakeel, Usama Haq, Azhar ul |
description | Summary
The emission of greenhouse gases from fossil‐fueled power plants is a major concern in power generation sector. Carbon dioxide (CO2) emissions constitute the major portion of the greenhouse gases. Among several opportunities available to reduce CO2, carbon capture and sequestration (CCS) is considered to be a possible option for CO2 mitigation. However, implementation of CCS increases the cost of power generation significantly. The main effort of this study is to explore the technical and economic aspects of a dual‐stage Selexol process and a proposed process named combined Sulfinol‐Selexol process, for pre‐combustion capture. The combined CO2 capture process utilizes Sulfinol‐M solvent‐based process for the selective capture of hydrogen sulfide and dimethyl ether of polyethylene glycol solvent‐based Selexol process for CO2 capture. The performance of both processes is assessed and compared in terms of energy consumptions, operating cost, and capital cost by simulating in Aspen HYSYS V.11. Sensitivity analysis for lean solvent inlet temperature, pressures of multi‐flash system and number of stages of the absorption columns is performed to improve both processes. The proposed combined process is 5.8% more economical than the baseline dual‐stage Selexol process as well as its overall process is simpler. However, after sensitivity analysis, both processes improved, and the dual‐stage Selexol process is found to be 3.31% more economical than the combined Sulfinol‐Selexol process.
This study compares and optimizes the dual‐stage Selexol process (DSSP) and a new process configuration named combined Sulfinol‐Selexol process (CSSP) for capturing 99.9% H2S and 90% CO2 from IGCC Power Plant. Results show that the base case of CSSP is more economical than DSSP, while optimized DSSP is more cost effective than CSSP. Optimization of key operating parameters resulted in 25.63% and 18.34% savings in terms of total annual cost for DSSP and CSSP, respectively. |
doi_str_mv | 10.1002/er.8674 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2758637707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2758637707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3224-d8fee4102b529488a8207806c699302b56fabeb24dd15da31b5efec010629a9b3</originalsourceid><addsrcrecordid>eNp10M1KAzEQAOAgCtYqvkLAgwfZmmT_vRWpP1BQrEJvIZvMasruZk12sb35CH1Gn8Ss9SR4GmbmmxkYhE4pmVBC2CXYSZak0R4aUZLnAaXRch-NSJiEQU7S5SE6cm5FiO_RdIS2jxa-PrfS1EXvOm0aLIUtfFDarLUCn7Zdb-EKT3H3BrY2XoM0jam1xH6sFVY770tjsepF5duuE6-AF1DB2lS4tUaCc1g0avCFbkDhRV-VujGD_uOO0UEpKgcnv3GMXm5mz9d3wfzh9v56Og9kyFgUqKwEiChhRczyKMtExkiakUQmeR4O1aQUBRQsUorGSoS0iKEESShJWC7yIhyjs91ef_e9B9fxlelt409ylsZZEqYpSb063ylpjXMWSt5aXQu74ZTw4d0cLB_e7eXFTn7oCjb_MT57-tHfdQWG8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2758637707</pqid></control><display><type>article</type><title>Pre‐combustion carbon dioxide capture: A thermo‐economic comparison for dual‐stage Selexol process and combined Sulfinol‐Selexol process</title><source>Access via Wiley Online Library</source><creator>Ramzan, Neelam ; Rizwan, Muhammad ; Zaman, Muhammad ; Adnan, Muhammad ; Ullah, Atta ; Gungor, Afsin ; Shakeel, Usama ; Haq, Azhar ul</creator><creatorcontrib>Ramzan, Neelam ; Rizwan, Muhammad ; Zaman, Muhammad ; Adnan, Muhammad ; Ullah, Atta ; Gungor, Afsin ; Shakeel, Usama ; Haq, Azhar ul</creatorcontrib><description>Summary
The emission of greenhouse gases from fossil‐fueled power plants is a major concern in power generation sector. Carbon dioxide (CO2) emissions constitute the major portion of the greenhouse gases. Among several opportunities available to reduce CO2, carbon capture and sequestration (CCS) is considered to be a possible option for CO2 mitigation. However, implementation of CCS increases the cost of power generation significantly. The main effort of this study is to explore the technical and economic aspects of a dual‐stage Selexol process and a proposed process named combined Sulfinol‐Selexol process, for pre‐combustion capture. The combined CO2 capture process utilizes Sulfinol‐M solvent‐based process for the selective capture of hydrogen sulfide and dimethyl ether of polyethylene glycol solvent‐based Selexol process for CO2 capture. The performance of both processes is assessed and compared in terms of energy consumptions, operating cost, and capital cost by simulating in Aspen HYSYS V.11. Sensitivity analysis for lean solvent inlet temperature, pressures of multi‐flash system and number of stages of the absorption columns is performed to improve both processes. The proposed combined process is 5.8% more economical than the baseline dual‐stage Selexol process as well as its overall process is simpler. However, after sensitivity analysis, both processes improved, and the dual‐stage Selexol process is found to be 3.31% more economical than the combined Sulfinol‐Selexol process.
This study compares and optimizes the dual‐stage Selexol process (DSSP) and a new process configuration named combined Sulfinol‐Selexol process (CSSP) for capturing 99.9% H2S and 90% CO2 from IGCC Power Plant. Results show that the base case of CSSP is more economical than DSSP, while optimized DSSP is more cost effective than CSSP. Optimization of key operating parameters resulted in 25.63% and 18.34% savings in terms of total annual cost for DSSP and CSSP, respectively.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1002/er.8674</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Inc</publisher><subject>Capital costs ; carbon capture ; Carbon capture and storage ; Carbon dioxide ; Carbon dioxide emissions ; Carbon sequestration ; Combustion ; Cost analysis ; Dimethyl ether ; Economics ; Electric power generation ; Emissions ; Fossil fuels ; Fossils ; Gases ; Greenhouse effect ; Greenhouse gases ; Hydrogen sulfide ; Hydrogen sulphide ; Inlet temperature ; Mitigation ; Operating costs ; physical solvent ; Polyethylene glycol ; Power plants ; Selexol process ; Sensitivity analysis ; Solvents ; Sulfinol process ; Sulphides ; thermo‐economic analysis</subject><ispartof>International journal of energy research, 2022-12, Vol.46 (15), p.23775-23795</ispartof><rights>2022 John Wiley & Sons Ltd.</rights><rights>2022 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3224-d8fee4102b529488a8207806c699302b56fabeb24dd15da31b5efec010629a9b3</citedby><cites>FETCH-LOGICAL-c3224-d8fee4102b529488a8207806c699302b56fabeb24dd15da31b5efec010629a9b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fer.8674$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fer.8674$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Ramzan, Neelam</creatorcontrib><creatorcontrib>Rizwan, Muhammad</creatorcontrib><creatorcontrib>Zaman, Muhammad</creatorcontrib><creatorcontrib>Adnan, Muhammad</creatorcontrib><creatorcontrib>Ullah, Atta</creatorcontrib><creatorcontrib>Gungor, Afsin</creatorcontrib><creatorcontrib>Shakeel, Usama</creatorcontrib><creatorcontrib>Haq, Azhar ul</creatorcontrib><title>Pre‐combustion carbon dioxide capture: A thermo‐economic comparison for dual‐stage Selexol process and combined Sulfinol‐Selexol process</title><title>International journal of energy research</title><description>Summary
The emission of greenhouse gases from fossil‐fueled power plants is a major concern in power generation sector. Carbon dioxide (CO2) emissions constitute the major portion of the greenhouse gases. Among several opportunities available to reduce CO2, carbon capture and sequestration (CCS) is considered to be a possible option for CO2 mitigation. However, implementation of CCS increases the cost of power generation significantly. The main effort of this study is to explore the technical and economic aspects of a dual‐stage Selexol process and a proposed process named combined Sulfinol‐Selexol process, for pre‐combustion capture. The combined CO2 capture process utilizes Sulfinol‐M solvent‐based process for the selective capture of hydrogen sulfide and dimethyl ether of polyethylene glycol solvent‐based Selexol process for CO2 capture. The performance of both processes is assessed and compared in terms of energy consumptions, operating cost, and capital cost by simulating in Aspen HYSYS V.11. Sensitivity analysis for lean solvent inlet temperature, pressures of multi‐flash system and number of stages of the absorption columns is performed to improve both processes. The proposed combined process is 5.8% more economical than the baseline dual‐stage Selexol process as well as its overall process is simpler. However, after sensitivity analysis, both processes improved, and the dual‐stage Selexol process is found to be 3.31% more economical than the combined Sulfinol‐Selexol process.
This study compares and optimizes the dual‐stage Selexol process (DSSP) and a new process configuration named combined Sulfinol‐Selexol process (CSSP) for capturing 99.9% H2S and 90% CO2 from IGCC Power Plant. Results show that the base case of CSSP is more economical than DSSP, while optimized DSSP is more cost effective than CSSP. Optimization of key operating parameters resulted in 25.63% and 18.34% savings in terms of total annual cost for DSSP and CSSP, respectively.</description><subject>Capital costs</subject><subject>carbon capture</subject><subject>Carbon capture and storage</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide emissions</subject><subject>Carbon sequestration</subject><subject>Combustion</subject><subject>Cost analysis</subject><subject>Dimethyl ether</subject><subject>Economics</subject><subject>Electric power generation</subject><subject>Emissions</subject><subject>Fossil fuels</subject><subject>Fossils</subject><subject>Gases</subject><subject>Greenhouse effect</subject><subject>Greenhouse gases</subject><subject>Hydrogen sulfide</subject><subject>Hydrogen sulphide</subject><subject>Inlet temperature</subject><subject>Mitigation</subject><subject>Operating costs</subject><subject>physical solvent</subject><subject>Polyethylene glycol</subject><subject>Power plants</subject><subject>Selexol process</subject><subject>Sensitivity analysis</subject><subject>Solvents</subject><subject>Sulfinol process</subject><subject>Sulphides</subject><subject>thermo‐economic analysis</subject><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp10M1KAzEQAOAgCtYqvkLAgwfZmmT_vRWpP1BQrEJvIZvMasruZk12sb35CH1Gn8Ss9SR4GmbmmxkYhE4pmVBC2CXYSZak0R4aUZLnAaXRch-NSJiEQU7S5SE6cm5FiO_RdIS2jxa-PrfS1EXvOm0aLIUtfFDarLUCn7Zdb-EKT3H3BrY2XoM0jam1xH6sFVY770tjsepF5duuE6-AF1DB2lS4tUaCc1g0avCFbkDhRV-VujGD_uOO0UEpKgcnv3GMXm5mz9d3wfzh9v56Og9kyFgUqKwEiChhRczyKMtExkiakUQmeR4O1aQUBRQsUorGSoS0iKEESShJWC7yIhyjs91ef_e9B9fxlelt409ylsZZEqYpSb063ylpjXMWSt5aXQu74ZTw4d0cLB_e7eXFTn7oCjb_MT57-tHfdQWG8w</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Ramzan, Neelam</creator><creator>Rizwan, Muhammad</creator><creator>Zaman, Muhammad</creator><creator>Adnan, Muhammad</creator><creator>Ullah, Atta</creator><creator>Gungor, Afsin</creator><creator>Shakeel, Usama</creator><creator>Haq, Azhar ul</creator><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>202212</creationdate><title>Pre‐combustion carbon dioxide capture: A thermo‐economic comparison for dual‐stage Selexol process and combined Sulfinol‐Selexol process</title><author>Ramzan, Neelam ; Rizwan, Muhammad ; Zaman, Muhammad ; Adnan, Muhammad ; Ullah, Atta ; Gungor, Afsin ; Shakeel, Usama ; Haq, Azhar ul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3224-d8fee4102b529488a8207806c699302b56fabeb24dd15da31b5efec010629a9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Capital costs</topic><topic>carbon capture</topic><topic>Carbon capture and storage</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide emissions</topic><topic>Carbon sequestration</topic><topic>Combustion</topic><topic>Cost analysis</topic><topic>Dimethyl ether</topic><topic>Economics</topic><topic>Electric power generation</topic><topic>Emissions</topic><topic>Fossil fuels</topic><topic>Fossils</topic><topic>Gases</topic><topic>Greenhouse effect</topic><topic>Greenhouse gases</topic><topic>Hydrogen sulfide</topic><topic>Hydrogen sulphide</topic><topic>Inlet temperature</topic><topic>Mitigation</topic><topic>Operating costs</topic><topic>physical solvent</topic><topic>Polyethylene glycol</topic><topic>Power plants</topic><topic>Selexol process</topic><topic>Sensitivity analysis</topic><topic>Solvents</topic><topic>Sulfinol process</topic><topic>Sulphides</topic><topic>thermo‐economic analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramzan, Neelam</creatorcontrib><creatorcontrib>Rizwan, Muhammad</creatorcontrib><creatorcontrib>Zaman, Muhammad</creatorcontrib><creatorcontrib>Adnan, Muhammad</creatorcontrib><creatorcontrib>Ullah, Atta</creatorcontrib><creatorcontrib>Gungor, Afsin</creatorcontrib><creatorcontrib>Shakeel, Usama</creatorcontrib><creatorcontrib>Haq, Azhar ul</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>International journal of energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramzan, Neelam</au><au>Rizwan, Muhammad</au><au>Zaman, Muhammad</au><au>Adnan, Muhammad</au><au>Ullah, Atta</au><au>Gungor, Afsin</au><au>Shakeel, Usama</au><au>Haq, Azhar ul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pre‐combustion carbon dioxide capture: A thermo‐economic comparison for dual‐stage Selexol process and combined Sulfinol‐Selexol process</atitle><jtitle>International journal of energy research</jtitle><date>2022-12</date><risdate>2022</risdate><volume>46</volume><issue>15</issue><spage>23775</spage><epage>23795</epage><pages>23775-23795</pages><issn>0363-907X</issn><eissn>1099-114X</eissn><abstract>Summary
The emission of greenhouse gases from fossil‐fueled power plants is a major concern in power generation sector. Carbon dioxide (CO2) emissions constitute the major portion of the greenhouse gases. Among several opportunities available to reduce CO2, carbon capture and sequestration (CCS) is considered to be a possible option for CO2 mitigation. However, implementation of CCS increases the cost of power generation significantly. The main effort of this study is to explore the technical and economic aspects of a dual‐stage Selexol process and a proposed process named combined Sulfinol‐Selexol process, for pre‐combustion capture. The combined CO2 capture process utilizes Sulfinol‐M solvent‐based process for the selective capture of hydrogen sulfide and dimethyl ether of polyethylene glycol solvent‐based Selexol process for CO2 capture. The performance of both processes is assessed and compared in terms of energy consumptions, operating cost, and capital cost by simulating in Aspen HYSYS V.11. Sensitivity analysis for lean solvent inlet temperature, pressures of multi‐flash system and number of stages of the absorption columns is performed to improve both processes. The proposed combined process is 5.8% more economical than the baseline dual‐stage Selexol process as well as its overall process is simpler. However, after sensitivity analysis, both processes improved, and the dual‐stage Selexol process is found to be 3.31% more economical than the combined Sulfinol‐Selexol process.
This study compares and optimizes the dual‐stage Selexol process (DSSP) and a new process configuration named combined Sulfinol‐Selexol process (CSSP) for capturing 99.9% H2S and 90% CO2 from IGCC Power Plant. Results show that the base case of CSSP is more economical than DSSP, while optimized DSSP is more cost effective than CSSP. Optimization of key operating parameters resulted in 25.63% and 18.34% savings in terms of total annual cost for DSSP and CSSP, respectively.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/er.8674</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-907X |
ispartof | International journal of energy research, 2022-12, Vol.46 (15), p.23775-23795 |
issn | 0363-907X 1099-114X |
language | eng |
recordid | cdi_proquest_journals_2758637707 |
source | Access via Wiley Online Library |
subjects | Capital costs carbon capture Carbon capture and storage Carbon dioxide Carbon dioxide emissions Carbon sequestration Combustion Cost analysis Dimethyl ether Economics Electric power generation Emissions Fossil fuels Fossils Gases Greenhouse effect Greenhouse gases Hydrogen sulfide Hydrogen sulphide Inlet temperature Mitigation Operating costs physical solvent Polyethylene glycol Power plants Selexol process Sensitivity analysis Solvents Sulfinol process Sulphides thermo‐economic analysis |
title | Pre‐combustion carbon dioxide capture: A thermo‐economic comparison for dual‐stage Selexol process and combined Sulfinol‐Selexol process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T23%3A14%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pre%E2%80%90combustion%20carbon%20dioxide%20capture:%20A%20thermo%E2%80%90economic%20comparison%20for%20dual%E2%80%90stage%20Selexol%20process%20and%20combined%20Sulfinol%E2%80%90Selexol%20process&rft.jtitle=International%20journal%20of%20energy%20research&rft.au=Ramzan,%20Neelam&rft.date=2022-12&rft.volume=46&rft.issue=15&rft.spage=23775&rft.epage=23795&rft.pages=23775-23795&rft.issn=0363-907X&rft.eissn=1099-114X&rft_id=info:doi/10.1002/er.8674&rft_dat=%3Cproquest_cross%3E2758637707%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2758637707&rft_id=info:pmid/&rfr_iscdi=true |