Strategy optimization of distributed battery energy storage systems for improving dynamic performances of VRB in active distribution networks

Summary This paper proposed an improved genetic algorithm‐based operational strategy for vanadium redox flow battery (VRB) energy storage systems (ESSs) in active distribution networks for improving the dynamic performances of batteries. Firstly, the accurate model of VRB considering the influences...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of energy research 2022-12, Vol.46 (15), p.21812-21825
1. Verfasser: Lei, Jiazhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21825
container_issue 15
container_start_page 21812
container_title International journal of energy research
container_volume 46
creator Lei, Jiazhi
description Summary This paper proposed an improved genetic algorithm‐based operational strategy for vanadium redox flow battery (VRB) energy storage systems (ESSs) in active distribution networks for improving the dynamic performances of batteries. Firstly, the accurate model of VRB considering the influences of external factors, such as temperature, electrolyte flow rate, ion exchange membrane, catalyst, polarization, self‐discharge, and leakage current are constructed. By the test of the accurate model, the dynamic performances Ф of VRB consisting of efficiency η, self‐discharge rate λ, utilization rate ψu, maximum discharge depth DoD, and cycle life κ are reasonably proposed. And then, the mathematical framework for the operational strategy optimization of ESSs was developed considering both the dynamic performances Ф and the external benefits of VRB ESSs. Finally, case studies based on a modified IEEE 123 Node Test Feeder verified the safe and reasonable operational states of battery ESSs with higher efficiencies, utilization rate, cycle life and lower self‐discharge rate, and maximum discharge depth. The dynamic performances of battery ESSs are enhanced by about 32.4%. Improving dynamic performances of battery. Mathematical framework for the operational strategy optimization of ESSs in active distribution networks.
doi_str_mv 10.1002/er.8744
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2758633156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2758633156</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2844-15e9d93e070bf74f7032c4d9fb7c70f934a168248a3e653188ad6968ea3c2ee93</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMoOKf4FwJeeCGdSZM2zaWO-QEDYX6wu5K2JyNzbWaSbdT_4H-2dYJXXp2L9-F5Dy9C55SMKCHxNbhRJjg_QANKpIwo5fNDNCAsZZEkYn6MTrxfEtJlVAzQ13NwKsCixXYdTG0-VTC2wVbjyvjgTLEJUOFChQCuxdCA61AfrFMLwL71AWqPtXXY1Gtnt6ZZ4KptVG1KvAbXBbVqSvC98G12i02DVRnMFv70fV0DYWfduz9FR1qtPJz93iF6vZu8jB-i6dP94_hmGpVxxnlEE5CVZEAEKbTgWhAWl7ySuhClIFoyrmiaxTxTDNKE0SxTVSrTDBQrYwDJhuhi7-1-_tiAD_nSblzTVeaxSLKUMZqkHXW5p0pnvXeg87UztXJtTkneb52Dy_utO_JqT-7MCtr_sHwy-6G_AUsigsQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2758633156</pqid></control><display><type>article</type><title>Strategy optimization of distributed battery energy storage systems for improving dynamic performances of VRB in active distribution networks</title><source>Wiley Journals</source><creator>Lei, Jiazhi</creator><creatorcontrib>Lei, Jiazhi</creatorcontrib><description>Summary This paper proposed an improved genetic algorithm‐based operational strategy for vanadium redox flow battery (VRB) energy storage systems (ESSs) in active distribution networks for improving the dynamic performances of batteries. Firstly, the accurate model of VRB considering the influences of external factors, such as temperature, electrolyte flow rate, ion exchange membrane, catalyst, polarization, self‐discharge, and leakage current are constructed. By the test of the accurate model, the dynamic performances Ф of VRB consisting of efficiency η, self‐discharge rate λ, utilization rate ψu, maximum discharge depth DoD, and cycle life κ are reasonably proposed. And then, the mathematical framework for the operational strategy optimization of ESSs was developed considering both the dynamic performances Ф and the external benefits of VRB ESSs. Finally, case studies based on a modified IEEE 123 Node Test Feeder verified the safe and reasonable operational states of battery ESSs with higher efficiencies, utilization rate, cycle life and lower self‐discharge rate, and maximum discharge depth. The dynamic performances of battery ESSs are enhanced by about 32.4%. Improving dynamic performances of battery. Mathematical framework for the operational strategy optimization of ESSs in active distribution networks.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1002/er.8744</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Inc</publisher><subject>Batteries ; battery energy storage system ; Catalysts ; Discharge ; Distribution ; dynamic performances ; Energy storage ; Flow rates ; Flow velocity ; Genetic algorithms ; Ion exchange ; Leakage current ; Optimization ; Rechargeable batteries ; Storage systems ; strategy optimization ; Vanadium</subject><ispartof>International journal of energy research, 2022-12, Vol.46 (15), p.21812-21825</ispartof><rights>2022 John Wiley &amp; Sons Ltd.</rights><rights>2022 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2844-15e9d93e070bf74f7032c4d9fb7c70f934a168248a3e653188ad6968ea3c2ee93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fer.8744$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fer.8744$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Lei, Jiazhi</creatorcontrib><title>Strategy optimization of distributed battery energy storage systems for improving dynamic performances of VRB in active distribution networks</title><title>International journal of energy research</title><description>Summary This paper proposed an improved genetic algorithm‐based operational strategy for vanadium redox flow battery (VRB) energy storage systems (ESSs) in active distribution networks for improving the dynamic performances of batteries. Firstly, the accurate model of VRB considering the influences of external factors, such as temperature, electrolyte flow rate, ion exchange membrane, catalyst, polarization, self‐discharge, and leakage current are constructed. By the test of the accurate model, the dynamic performances Ф of VRB consisting of efficiency η, self‐discharge rate λ, utilization rate ψu, maximum discharge depth DoD, and cycle life κ are reasonably proposed. And then, the mathematical framework for the operational strategy optimization of ESSs was developed considering both the dynamic performances Ф and the external benefits of VRB ESSs. Finally, case studies based on a modified IEEE 123 Node Test Feeder verified the safe and reasonable operational states of battery ESSs with higher efficiencies, utilization rate, cycle life and lower self‐discharge rate, and maximum discharge depth. The dynamic performances of battery ESSs are enhanced by about 32.4%. Improving dynamic performances of battery. Mathematical framework for the operational strategy optimization of ESSs in active distribution networks.</description><subject>Batteries</subject><subject>battery energy storage system</subject><subject>Catalysts</subject><subject>Discharge</subject><subject>Distribution</subject><subject>dynamic performances</subject><subject>Energy storage</subject><subject>Flow rates</subject><subject>Flow velocity</subject><subject>Genetic algorithms</subject><subject>Ion exchange</subject><subject>Leakage current</subject><subject>Optimization</subject><subject>Rechargeable batteries</subject><subject>Storage systems</subject><subject>strategy optimization</subject><subject>Vanadium</subject><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kF1LwzAUhoMoOKf4FwJeeCGdSZM2zaWO-QEDYX6wu5K2JyNzbWaSbdT_4H-2dYJXXp2L9-F5Dy9C55SMKCHxNbhRJjg_QANKpIwo5fNDNCAsZZEkYn6MTrxfEtJlVAzQ13NwKsCixXYdTG0-VTC2wVbjyvjgTLEJUOFChQCuxdCA61AfrFMLwL71AWqPtXXY1Gtnt6ZZ4KptVG1KvAbXBbVqSvC98G12i02DVRnMFv70fV0DYWfduz9FR1qtPJz93iF6vZu8jB-i6dP94_hmGpVxxnlEE5CVZEAEKbTgWhAWl7ySuhClIFoyrmiaxTxTDNKE0SxTVSrTDBQrYwDJhuhi7-1-_tiAD_nSblzTVeaxSLKUMZqkHXW5p0pnvXeg87UztXJtTkneb52Dy_utO_JqT-7MCtr_sHwy-6G_AUsigsQ</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Lei, Jiazhi</creator><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>202212</creationdate><title>Strategy optimization of distributed battery energy storage systems for improving dynamic performances of VRB in active distribution networks</title><author>Lei, Jiazhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2844-15e9d93e070bf74f7032c4d9fb7c70f934a168248a3e653188ad6968ea3c2ee93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Batteries</topic><topic>battery energy storage system</topic><topic>Catalysts</topic><topic>Discharge</topic><topic>Distribution</topic><topic>dynamic performances</topic><topic>Energy storage</topic><topic>Flow rates</topic><topic>Flow velocity</topic><topic>Genetic algorithms</topic><topic>Ion exchange</topic><topic>Leakage current</topic><topic>Optimization</topic><topic>Rechargeable batteries</topic><topic>Storage systems</topic><topic>strategy optimization</topic><topic>Vanadium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lei, Jiazhi</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>International journal of energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lei, Jiazhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strategy optimization of distributed battery energy storage systems for improving dynamic performances of VRB in active distribution networks</atitle><jtitle>International journal of energy research</jtitle><date>2022-12</date><risdate>2022</risdate><volume>46</volume><issue>15</issue><spage>21812</spage><epage>21825</epage><pages>21812-21825</pages><issn>0363-907X</issn><eissn>1099-114X</eissn><abstract>Summary This paper proposed an improved genetic algorithm‐based operational strategy for vanadium redox flow battery (VRB) energy storage systems (ESSs) in active distribution networks for improving the dynamic performances of batteries. Firstly, the accurate model of VRB considering the influences of external factors, such as temperature, electrolyte flow rate, ion exchange membrane, catalyst, polarization, self‐discharge, and leakage current are constructed. By the test of the accurate model, the dynamic performances Ф of VRB consisting of efficiency η, self‐discharge rate λ, utilization rate ψu, maximum discharge depth DoD, and cycle life κ are reasonably proposed. And then, the mathematical framework for the operational strategy optimization of ESSs was developed considering both the dynamic performances Ф and the external benefits of VRB ESSs. Finally, case studies based on a modified IEEE 123 Node Test Feeder verified the safe and reasonable operational states of battery ESSs with higher efficiencies, utilization rate, cycle life and lower self‐discharge rate, and maximum discharge depth. The dynamic performances of battery ESSs are enhanced by about 32.4%. Improving dynamic performances of battery. Mathematical framework for the operational strategy optimization of ESSs in active distribution networks.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/er.8744</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0363-907X
ispartof International journal of energy research, 2022-12, Vol.46 (15), p.21812-21825
issn 0363-907X
1099-114X
language eng
recordid cdi_proquest_journals_2758633156
source Wiley Journals
subjects Batteries
battery energy storage system
Catalysts
Discharge
Distribution
dynamic performances
Energy storage
Flow rates
Flow velocity
Genetic algorithms
Ion exchange
Leakage current
Optimization
Rechargeable batteries
Storage systems
strategy optimization
Vanadium
title Strategy optimization of distributed battery energy storage systems for improving dynamic performances of VRB in active distribution networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A02%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strategy%20optimization%20of%20distributed%20battery%20energy%20storage%20systems%20for%20improving%20dynamic%20performances%20of%20VRB%20in%20active%20distribution%20networks&rft.jtitle=International%20journal%20of%20energy%20research&rft.au=Lei,%20Jiazhi&rft.date=2022-12&rft.volume=46&rft.issue=15&rft.spage=21812&rft.epage=21825&rft.pages=21812-21825&rft.issn=0363-907X&rft.eissn=1099-114X&rft_id=info:doi/10.1002/er.8744&rft_dat=%3Cproquest_cross%3E2758633156%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2758633156&rft_id=info:pmid/&rfr_iscdi=true