Localization Of Multiple Leaks In Pipelines Using Decision Trees And Support Vector Machines

Pipeline transport is widely used in industrial production and daily life. To reduce the waste of resources and economic losses caused by pipeline leaks, leak detection, localization and estimation systems are implemented in liquid pipelines. To minimize leak interpretation errors, leak detection al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Webology 2022-01, Vol.19 (6), p.759-769
Hauptverfasser: Camperos, July Andrea Gomez, Jaramillo, Haidee Yulady, Castrillón, Sir Alexci Suárez
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 769
container_issue 6
container_start_page 759
container_title Webology
container_volume 19
creator Camperos, July Andrea Gomez
Jaramillo, Haidee Yulady
Castrillón, Sir Alexci Suárez
description Pipeline transport is widely used in industrial production and daily life. To reduce the waste of resources and economic losses caused by pipeline leaks, leak detection, localization and estimation systems are implemented in liquid pipelines. To minimize leak interpretation errors, leak detection algorithms based on artificial intelligence (AI) and data analysis have been developed. This study proposes a scheme for the detection and localization of multiple sequential leaks, based on the combination of two techniques such as decision trees and support vector machines. The results show that the proposed models have high accuracy, precision, recall and F1 score of 99.9%, 99.7%, respectively, which are better than the traditional classification model.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2758330086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2758330086</sourcerecordid><originalsourceid>FETCH-proquest_journals_27583300863</originalsourceid><addsrcrecordid>eNqNi8sKwjAUBYMg-PyHC64LadNqt-IDhRYFq7gQJNSrpoYkJunGr7cFP8DVgZk5HdIPZywJwjQ998jAuYrSOI4o7ZNLpksuxYd7oRXs7pDX0gsjETLkLwdbBXthUAqFDo5OqAcssRSurQuLDZyrGxxqY7T1cMLSaws5L5_tYUS6dy4djn87JJP1qlhsAmP1u0bnr5WurWrUNZolKWOUplP2X_UFC6xCWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2758330086</pqid></control><display><type>article</type><title>Localization Of Multiple Leaks In Pipelines Using Decision Trees And Support Vector Machines</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Camperos, July Andrea Gomez ; Jaramillo, Haidee Yulady ; Castrillón, Sir Alexci Suárez</creator><creatorcontrib>Camperos, July Andrea Gomez ; Jaramillo, Haidee Yulady ; Castrillón, Sir Alexci Suárez</creatorcontrib><description>Pipeline transport is widely used in industrial production and daily life. To reduce the waste of resources and economic losses caused by pipeline leaks, leak detection, localization and estimation systems are implemented in liquid pipelines. To minimize leak interpretation errors, leak detection algorithms based on artificial intelligence (AI) and data analysis have been developed. This study proposes a scheme for the detection and localization of multiple sequential leaks, based on the combination of two techniques such as decision trees and support vector machines. The results show that the proposed models have high accuracy, precision, recall and F1 score of 99.9%, 99.7%, respectively, which are better than the traditional classification model.</description><identifier>EISSN: 1735-188X</identifier><language>eng</language><publisher>Tehran: Dr. Alireza Noruzi, University of Tehran, Department of Library and Information Science</publisher><subject>Algorithms ; Artificial intelligence ; Classification ; Data collection ; Decision making ; Decision trees ; Hydraulics ; Leak detection ; Localization ; Machine learning ; R&amp;D ; Research &amp; development ; Support vector machines</subject><ispartof>Webology, 2022-01, Vol.19 (6), p.759-769</ispartof><rights>Copyright Dr. Alireza Noruzi, University of Tehran, Department of Library and Information Science 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Camperos, July Andrea Gomez</creatorcontrib><creatorcontrib>Jaramillo, Haidee Yulady</creatorcontrib><creatorcontrib>Castrillón, Sir Alexci Suárez</creatorcontrib><title>Localization Of Multiple Leaks In Pipelines Using Decision Trees And Support Vector Machines</title><title>Webology</title><description>Pipeline transport is widely used in industrial production and daily life. To reduce the waste of resources and economic losses caused by pipeline leaks, leak detection, localization and estimation systems are implemented in liquid pipelines. To minimize leak interpretation errors, leak detection algorithms based on artificial intelligence (AI) and data analysis have been developed. This study proposes a scheme for the detection and localization of multiple sequential leaks, based on the combination of two techniques such as decision trees and support vector machines. The results show that the proposed models have high accuracy, precision, recall and F1 score of 99.9%, 99.7%, respectively, which are better than the traditional classification model.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Classification</subject><subject>Data collection</subject><subject>Decision making</subject><subject>Decision trees</subject><subject>Hydraulics</subject><subject>Leak detection</subject><subject>Localization</subject><subject>Machine learning</subject><subject>R&amp;D</subject><subject>Research &amp; development</subject><subject>Support vector machines</subject><issn>1735-188X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNi8sKwjAUBYMg-PyHC64LadNqt-IDhRYFq7gQJNSrpoYkJunGr7cFP8DVgZk5HdIPZywJwjQ998jAuYrSOI4o7ZNLpksuxYd7oRXs7pDX0gsjETLkLwdbBXthUAqFDo5OqAcssRSurQuLDZyrGxxqY7T1cMLSaws5L5_tYUS6dy4djn87JJP1qlhsAmP1u0bnr5WurWrUNZolKWOUplP2X_UFC6xCWg</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Camperos, July Andrea Gomez</creator><creator>Jaramillo, Haidee Yulady</creator><creator>Castrillón, Sir Alexci Suárez</creator><general>Dr. Alireza Noruzi, University of Tehran, Department of Library and Information Science</general><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>M1O</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20220101</creationdate><title>Localization Of Multiple Leaks In Pipelines Using Decision Trees And Support Vector Machines</title><author>Camperos, July Andrea Gomez ; Jaramillo, Haidee Yulady ; Castrillón, Sir Alexci Suárez</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27583300863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Classification</topic><topic>Data collection</topic><topic>Decision making</topic><topic>Decision trees</topic><topic>Hydraulics</topic><topic>Leak detection</topic><topic>Localization</topic><topic>Machine learning</topic><topic>R&amp;D</topic><topic>Research &amp; development</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Camperos, July Andrea Gomez</creatorcontrib><creatorcontrib>Jaramillo, Haidee Yulady</creatorcontrib><creatorcontrib>Castrillón, Sir Alexci Suárez</creatorcontrib><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Library &amp; Information Science Collection</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>Library Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Webology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Camperos, July Andrea Gomez</au><au>Jaramillo, Haidee Yulady</au><au>Castrillón, Sir Alexci Suárez</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Localization Of Multiple Leaks In Pipelines Using Decision Trees And Support Vector Machines</atitle><jtitle>Webology</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>19</volume><issue>6</issue><spage>759</spage><epage>769</epage><pages>759-769</pages><eissn>1735-188X</eissn><abstract>Pipeline transport is widely used in industrial production and daily life. To reduce the waste of resources and economic losses caused by pipeline leaks, leak detection, localization and estimation systems are implemented in liquid pipelines. To minimize leak interpretation errors, leak detection algorithms based on artificial intelligence (AI) and data analysis have been developed. This study proposes a scheme for the detection and localization of multiple sequential leaks, based on the combination of two techniques such as decision trees and support vector machines. The results show that the proposed models have high accuracy, precision, recall and F1 score of 99.9%, 99.7%, respectively, which are better than the traditional classification model.</abstract><cop>Tehran</cop><pub>Dr. Alireza Noruzi, University of Tehran, Department of Library and Information Science</pub></addata></record>
fulltext fulltext
identifier EISSN: 1735-188X
ispartof Webology, 2022-01, Vol.19 (6), p.759-769
issn 1735-188X
language eng
recordid cdi_proquest_journals_2758330086
source EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Artificial intelligence
Classification
Data collection
Decision making
Decision trees
Hydraulics
Leak detection
Localization
Machine learning
R&D
Research & development
Support vector machines
title Localization Of Multiple Leaks In Pipelines Using Decision Trees And Support Vector Machines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T08%3A37%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Localization%20Of%20Multiple%20Leaks%20In%20Pipelines%20Using%20Decision%20Trees%20And%20Support%20Vector%20Machines&rft.jtitle=Webology&rft.au=Camperos,%20July%20Andrea%20Gomez&rft.date=2022-01-01&rft.volume=19&rft.issue=6&rft.spage=759&rft.epage=769&rft.pages=759-769&rft.eissn=1735-188X&rft_id=info:doi/&rft_dat=%3Cproquest%3E2758330086%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2758330086&rft_id=info:pmid/&rfr_iscdi=true