Localization Of Multiple Leaks In Pipelines Using Decision Trees And Support Vector Machines
Pipeline transport is widely used in industrial production and daily life. To reduce the waste of resources and economic losses caused by pipeline leaks, leak detection, localization and estimation systems are implemented in liquid pipelines. To minimize leak interpretation errors, leak detection al...
Gespeichert in:
Veröffentlicht in: | Webology 2022-01, Vol.19 (6), p.759-769 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 769 |
---|---|
container_issue | 6 |
container_start_page | 759 |
container_title | Webology |
container_volume | 19 |
creator | Camperos, July Andrea Gomez Jaramillo, Haidee Yulady Castrillón, Sir Alexci Suárez |
description | Pipeline transport is widely used in industrial production and daily life. To reduce the waste of resources and economic losses caused by pipeline leaks, leak detection, localization and estimation systems are implemented in liquid pipelines. To minimize leak interpretation errors, leak detection algorithms based on artificial intelligence (AI) and data analysis have been developed. This study proposes a scheme for the detection and localization of multiple sequential leaks, based on the combination of two techniques such as decision trees and support vector machines. The results show that the proposed models have high accuracy, precision, recall and F1 score of 99.9%, 99.7%, respectively, which are better than the traditional classification model. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2758330086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2758330086</sourcerecordid><originalsourceid>FETCH-proquest_journals_27583300863</originalsourceid><addsrcrecordid>eNqNi8sKwjAUBYMg-PyHC64LadNqt-IDhRYFq7gQJNSrpoYkJunGr7cFP8DVgZk5HdIPZywJwjQ998jAuYrSOI4o7ZNLpksuxYd7oRXs7pDX0gsjETLkLwdbBXthUAqFDo5OqAcssRSurQuLDZyrGxxqY7T1cMLSaws5L5_tYUS6dy4djn87JJP1qlhsAmP1u0bnr5WurWrUNZolKWOUplP2X_UFC6xCWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2758330086</pqid></control><display><type>article</type><title>Localization Of Multiple Leaks In Pipelines Using Decision Trees And Support Vector Machines</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Camperos, July Andrea Gomez ; Jaramillo, Haidee Yulady ; Castrillón, Sir Alexci Suárez</creator><creatorcontrib>Camperos, July Andrea Gomez ; Jaramillo, Haidee Yulady ; Castrillón, Sir Alexci Suárez</creatorcontrib><description>Pipeline transport is widely used in industrial production and daily life. To reduce the waste of resources and economic losses caused by pipeline leaks, leak detection, localization and estimation systems are implemented in liquid pipelines. To minimize leak interpretation errors, leak detection algorithms based on artificial intelligence (AI) and data analysis have been developed. This study proposes a scheme for the detection and localization of multiple sequential leaks, based on the combination of two techniques such as decision trees and support vector machines. The results show that the proposed models have high accuracy, precision, recall and F1 score of 99.9%, 99.7%, respectively, which are better than the traditional classification model.</description><identifier>EISSN: 1735-188X</identifier><language>eng</language><publisher>Tehran: Dr. Alireza Noruzi, University of Tehran, Department of Library and Information Science</publisher><subject>Algorithms ; Artificial intelligence ; Classification ; Data collection ; Decision making ; Decision trees ; Hydraulics ; Leak detection ; Localization ; Machine learning ; R&D ; Research & development ; Support vector machines</subject><ispartof>Webology, 2022-01, Vol.19 (6), p.759-769</ispartof><rights>Copyright Dr. Alireza Noruzi, University of Tehran, Department of Library and Information Science 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Camperos, July Andrea Gomez</creatorcontrib><creatorcontrib>Jaramillo, Haidee Yulady</creatorcontrib><creatorcontrib>Castrillón, Sir Alexci Suárez</creatorcontrib><title>Localization Of Multiple Leaks In Pipelines Using Decision Trees And Support Vector Machines</title><title>Webology</title><description>Pipeline transport is widely used in industrial production and daily life. To reduce the waste of resources and economic losses caused by pipeline leaks, leak detection, localization and estimation systems are implemented in liquid pipelines. To minimize leak interpretation errors, leak detection algorithms based on artificial intelligence (AI) and data analysis have been developed. This study proposes a scheme for the detection and localization of multiple sequential leaks, based on the combination of two techniques such as decision trees and support vector machines. The results show that the proposed models have high accuracy, precision, recall and F1 score of 99.9%, 99.7%, respectively, which are better than the traditional classification model.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Classification</subject><subject>Data collection</subject><subject>Decision making</subject><subject>Decision trees</subject><subject>Hydraulics</subject><subject>Leak detection</subject><subject>Localization</subject><subject>Machine learning</subject><subject>R&D</subject><subject>Research & development</subject><subject>Support vector machines</subject><issn>1735-188X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNi8sKwjAUBYMg-PyHC64LadNqt-IDhRYFq7gQJNSrpoYkJunGr7cFP8DVgZk5HdIPZywJwjQ998jAuYrSOI4o7ZNLpksuxYd7oRXs7pDX0gsjETLkLwdbBXthUAqFDo5OqAcssRSurQuLDZyrGxxqY7T1cMLSaws5L5_tYUS6dy4djn87JJP1qlhsAmP1u0bnr5WurWrUNZolKWOUplP2X_UFC6xCWg</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Camperos, July Andrea Gomez</creator><creator>Jaramillo, Haidee Yulady</creator><creator>Castrillón, Sir Alexci Suárez</creator><general>Dr. Alireza Noruzi, University of Tehran, Department of Library and Information Science</general><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>M1O</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20220101</creationdate><title>Localization Of Multiple Leaks In Pipelines Using Decision Trees And Support Vector Machines</title><author>Camperos, July Andrea Gomez ; Jaramillo, Haidee Yulady ; Castrillón, Sir Alexci Suárez</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27583300863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Classification</topic><topic>Data collection</topic><topic>Decision making</topic><topic>Decision trees</topic><topic>Hydraulics</topic><topic>Leak detection</topic><topic>Localization</topic><topic>Machine learning</topic><topic>R&D</topic><topic>Research & development</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Camperos, July Andrea Gomez</creatorcontrib><creatorcontrib>Jaramillo, Haidee Yulady</creatorcontrib><creatorcontrib>Castrillón, Sir Alexci Suárez</creatorcontrib><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Library & Information Science Collection</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>Library Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Webology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Camperos, July Andrea Gomez</au><au>Jaramillo, Haidee Yulady</au><au>Castrillón, Sir Alexci Suárez</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Localization Of Multiple Leaks In Pipelines Using Decision Trees And Support Vector Machines</atitle><jtitle>Webology</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>19</volume><issue>6</issue><spage>759</spage><epage>769</epage><pages>759-769</pages><eissn>1735-188X</eissn><abstract>Pipeline transport is widely used in industrial production and daily life. To reduce the waste of resources and economic losses caused by pipeline leaks, leak detection, localization and estimation systems are implemented in liquid pipelines. To minimize leak interpretation errors, leak detection algorithms based on artificial intelligence (AI) and data analysis have been developed. This study proposes a scheme for the detection and localization of multiple sequential leaks, based on the combination of two techniques such as decision trees and support vector machines. The results show that the proposed models have high accuracy, precision, recall and F1 score of 99.9%, 99.7%, respectively, which are better than the traditional classification model.</abstract><cop>Tehran</cop><pub>Dr. Alireza Noruzi, University of Tehran, Department of Library and Information Science</pub></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1735-188X |
ispartof | Webology, 2022-01, Vol.19 (6), p.759-769 |
issn | 1735-188X |
language | eng |
recordid | cdi_proquest_journals_2758330086 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Artificial intelligence Classification Data collection Decision making Decision trees Hydraulics Leak detection Localization Machine learning R&D Research & development Support vector machines |
title | Localization Of Multiple Leaks In Pipelines Using Decision Trees And Support Vector Machines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T08%3A37%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Localization%20Of%20Multiple%20Leaks%20In%20Pipelines%20Using%20Decision%20Trees%20And%20Support%20Vector%20Machines&rft.jtitle=Webology&rft.au=Camperos,%20July%20Andrea%20Gomez&rft.date=2022-01-01&rft.volume=19&rft.issue=6&rft.spage=759&rft.epage=769&rft.pages=759-769&rft.eissn=1735-188X&rft_id=info:doi/&rft_dat=%3Cproquest%3E2758330086%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2758330086&rft_id=info:pmid/&rfr_iscdi=true |