Optimal Sizing Of A Hybrid Solar-Wind Energy System And Battery Bank Using Artificial Intelligence

To carry out the forecast of meteorological data in order to perform an analysis of the solar and wind potential of the Camilo Daza airport of the city of Cúcuta, multilayer Perceptron-type neural networks configured with 9 4-4layer neurons and 10 times or iterations are used to adjust the procedura...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Webology 2022-01, Vol.19 (6), p.465-476
Hauptverfasser: R, Raquel I Laguado, S, Elkin Gregorio Flórez, Suarez Castrillon, Albert Miyer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 476
container_issue 6
container_start_page 465
container_title Webology
container_volume 19
creator R, Raquel I Laguado
S, Elkin Gregorio Flórez
Suarez Castrillon, Albert Miyer
description To carry out the forecast of meteorological data in order to perform an analysis of the solar and wind potential of the Camilo Daza airport of the city of Cúcuta, multilayer Perceptron-type neural networks configured with 9 4-4layer neurons and 10 times or iterations are used to adjust the procedural variables of the regression. For this, the methodology presented by Jorge Aguilera and Leocadio Hontoria and the Weibull probability density distribution are used, with the intention of guaranteeing a lower initial investment with adequate and complete use of the solar system, the wind system and the bank of batteries, so that the cost / investment / benefit ratio is viable.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2758329307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2758329307</sourcerecordid><originalsourceid>FETCH-proquest_journals_27583293073</originalsourceid><addsrcrecordid>eNqNjMsKgkAYhYcgyC7v8ENrYbyhLS0MW7mwqJ14GeW3cbSZcWFPn0EP0OqDc75zFsSwfMczrSB4rMhaqZZS17UpNUiRDBq7nEOKbxQNJDWEEE-FxArSnufSvKOoIBJMNhOkk9Ksg3BOjrnWTE4zxRNu6rsNpcYaS5zfLkIzzrFhomRbsqxzrtjuxw3Zn6PrKTYH2b9GpnTW9qMUc5XZvhc49sGhvvOf9QFWkkP4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2758329307</pqid></control><display><type>article</type><title>Optimal Sizing Of A Hybrid Solar-Wind Energy System And Battery Bank Using Artificial Intelligence</title><source>EZB Electronic Journals Library</source><creator>R, Raquel I Laguado ; S, Elkin Gregorio Flórez ; Suarez Castrillon, Albert Miyer</creator><creatorcontrib>R, Raquel I Laguado ; S, Elkin Gregorio Flórez ; Suarez Castrillon, Albert Miyer</creatorcontrib><description>To carry out the forecast of meteorological data in order to perform an analysis of the solar and wind potential of the Camilo Daza airport of the city of Cúcuta, multilayer Perceptron-type neural networks configured with 9 4-4layer neurons and 10 times or iterations are used to adjust the procedural variables of the regression. For this, the methodology presented by Jorge Aguilera and Leocadio Hontoria and the Weibull probability density distribution are used, with the intention of guaranteeing a lower initial investment with adequate and complete use of the solar system, the wind system and the bank of batteries, so that the cost / investment / benefit ratio is viable.</description><identifier>EISSN: 1735-188X</identifier><language>eng</language><publisher>Tehran: Dr. Alireza Noruzi, University of Tehran, Department of Library and Information Science</publisher><subject>Airports ; Alternative energy sources ; Artificial intelligence ; Brain ; Electricity ; Energy consumption ; Neural networks ; Programming languages ; Radiation ; Renewable resources ; Wind power</subject><ispartof>Webology, 2022-01, Vol.19 (6), p.465-476</ispartof><rights>Copyright Dr. Alireza Noruzi, University of Tehran, Department of Library and Information Science 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>R, Raquel I Laguado</creatorcontrib><creatorcontrib>S, Elkin Gregorio Flórez</creatorcontrib><creatorcontrib>Suarez Castrillon, Albert Miyer</creatorcontrib><title>Optimal Sizing Of A Hybrid Solar-Wind Energy System And Battery Bank Using Artificial Intelligence</title><title>Webology</title><description>To carry out the forecast of meteorological data in order to perform an analysis of the solar and wind potential of the Camilo Daza airport of the city of Cúcuta, multilayer Perceptron-type neural networks configured with 9 4-4layer neurons and 10 times or iterations are used to adjust the procedural variables of the regression. For this, the methodology presented by Jorge Aguilera and Leocadio Hontoria and the Weibull probability density distribution are used, with the intention of guaranteeing a lower initial investment with adequate and complete use of the solar system, the wind system and the bank of batteries, so that the cost / investment / benefit ratio is viable.</description><subject>Airports</subject><subject>Alternative energy sources</subject><subject>Artificial intelligence</subject><subject>Brain</subject><subject>Electricity</subject><subject>Energy consumption</subject><subject>Neural networks</subject><subject>Programming languages</subject><subject>Radiation</subject><subject>Renewable resources</subject><subject>Wind power</subject><issn>1735-188X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjMsKgkAYhYcgyC7v8ENrYbyhLS0MW7mwqJ14GeW3cbSZcWFPn0EP0OqDc75zFsSwfMczrSB4rMhaqZZS17UpNUiRDBq7nEOKbxQNJDWEEE-FxArSnufSvKOoIBJMNhOkk9Ksg3BOjrnWTE4zxRNu6rsNpcYaS5zfLkIzzrFhomRbsqxzrtjuxw3Zn6PrKTYH2b9GpnTW9qMUc5XZvhc49sGhvvOf9QFWkkP4</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>R, Raquel I Laguado</creator><creator>S, Elkin Gregorio Flórez</creator><creator>Suarez Castrillon, Albert Miyer</creator><general>Dr. Alireza Noruzi, University of Tehran, Department of Library and Information Science</general><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>M1O</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20220101</creationdate><title>Optimal Sizing Of A Hybrid Solar-Wind Energy System And Battery Bank Using Artificial Intelligence</title><author>R, Raquel I Laguado ; S, Elkin Gregorio Flórez ; Suarez Castrillon, Albert Miyer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27583293073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Airports</topic><topic>Alternative energy sources</topic><topic>Artificial intelligence</topic><topic>Brain</topic><topic>Electricity</topic><topic>Energy consumption</topic><topic>Neural networks</topic><topic>Programming languages</topic><topic>Radiation</topic><topic>Renewable resources</topic><topic>Wind power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>R, Raquel I Laguado</creatorcontrib><creatorcontrib>S, Elkin Gregorio Flórez</creatorcontrib><creatorcontrib>Suarez Castrillon, Albert Miyer</creatorcontrib><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Library &amp; Information Science Collection</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>Library Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Webology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>R, Raquel I Laguado</au><au>S, Elkin Gregorio Flórez</au><au>Suarez Castrillon, Albert Miyer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Sizing Of A Hybrid Solar-Wind Energy System And Battery Bank Using Artificial Intelligence</atitle><jtitle>Webology</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>19</volume><issue>6</issue><spage>465</spage><epage>476</epage><pages>465-476</pages><eissn>1735-188X</eissn><abstract>To carry out the forecast of meteorological data in order to perform an analysis of the solar and wind potential of the Camilo Daza airport of the city of Cúcuta, multilayer Perceptron-type neural networks configured with 9 4-4layer neurons and 10 times or iterations are used to adjust the procedural variables of the regression. For this, the methodology presented by Jorge Aguilera and Leocadio Hontoria and the Weibull probability density distribution are used, with the intention of guaranteeing a lower initial investment with adequate and complete use of the solar system, the wind system and the bank of batteries, so that the cost / investment / benefit ratio is viable.</abstract><cop>Tehran</cop><pub>Dr. Alireza Noruzi, University of Tehran, Department of Library and Information Science</pub></addata></record>
fulltext fulltext
identifier EISSN: 1735-188X
ispartof Webology, 2022-01, Vol.19 (6), p.465-476
issn 1735-188X
language eng
recordid cdi_proquest_journals_2758329307
source EZB Electronic Journals Library
subjects Airports
Alternative energy sources
Artificial intelligence
Brain
Electricity
Energy consumption
Neural networks
Programming languages
Radiation
Renewable resources
Wind power
title Optimal Sizing Of A Hybrid Solar-Wind Energy System And Battery Bank Using Artificial Intelligence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A37%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Sizing%20Of%20A%20Hybrid%20Solar-Wind%20Energy%20System%20And%20Battery%20Bank%20Using%20Artificial%20Intelligence&rft.jtitle=Webology&rft.au=R,%20Raquel%20I%20Laguado&rft.date=2022-01-01&rft.volume=19&rft.issue=6&rft.spage=465&rft.epage=476&rft.pages=465-476&rft.eissn=1735-188X&rft_id=info:doi/&rft_dat=%3Cproquest%3E2758329307%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2758329307&rft_id=info:pmid/&rfr_iscdi=true