Trainable Proximal Gradient Descent Based Channel Estimation for mmWave Massive MIMO Systems

In this letter, we address the problem of millimeter-Wave channel estimation in massive MIMO communication systems. Leveraging the sparsity of the mmWave channel in the beamspace, we formulate the estimation problem as a sparse signal recovery problem. To this end, we propose a deep learning based t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-03
Hauptverfasser: Zheng, Peicong, Lyu, Xuantao, Gong, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Zheng, Peicong
Lyu, Xuantao
Gong, Yi
description In this letter, we address the problem of millimeter-Wave channel estimation in massive MIMO communication systems. Leveraging the sparsity of the mmWave channel in the beamspace, we formulate the estimation problem as a sparse signal recovery problem. To this end, we propose a deep learning based trainable proximal gradient descent network (TPGD-Net). The TPGD-Net unfolds the iterative proximal gradient descent (PGD) algorithm into a layer-wise network, with the gradient descent step size set as a trainable parameter. Additionally, we replace the proximal operator in the PGD algorithm with a neural network that exploits data-driven prior channel information to perform the proximal operation implicitly. To further enhance the transfer of feature information across layers, we introduce the cross-layer feature attention fusion module into the TPGD-Net. Our simulation results on the Saleh-Valenzuela channel model and the DeepMIMO dataset demonstrate the superior performance of TPGD-Net compared to state-of-the-art mmWave channel estimators.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2758202210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2758202210</sourcerecordid><originalsourceid>FETCH-proquest_journals_27582022103</originalsourceid><addsrcrecordid>eNqNyt8KAUEUgPFJKRve4ZTrrXHW4tr6eyHKlhulgyOz7c4wZ4i3R3kAV7-L76upCJOkGw97iA3VFim01tgfYJomkdrlnoylQ8mw9u5pKiph5ulk2AYYsxy_jkj4BNmFrOUSJhI-WzDOwtl5qKotPRiWJGK-LpYr2LwkcCUtVT9TKdz-2VSd6STP5vHVu9udJewLd_f2k_Y4SIeoEbs6-e96A3lkQrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2758202210</pqid></control><display><type>article</type><title>Trainable Proximal Gradient Descent Based Channel Estimation for mmWave Massive MIMO Systems</title><source>Freely Accessible Journals</source><creator>Zheng, Peicong ; Lyu, Xuantao ; Gong, Yi</creator><creatorcontrib>Zheng, Peicong ; Lyu, Xuantao ; Gong, Yi</creatorcontrib><description>In this letter, we address the problem of millimeter-Wave channel estimation in massive MIMO communication systems. Leveraging the sparsity of the mmWave channel in the beamspace, we formulate the estimation problem as a sparse signal recovery problem. To this end, we propose a deep learning based trainable proximal gradient descent network (TPGD-Net). The TPGD-Net unfolds the iterative proximal gradient descent (PGD) algorithm into a layer-wise network, with the gradient descent step size set as a trainable parameter. Additionally, we replace the proximal operator in the PGD algorithm with a neural network that exploits data-driven prior channel information to perform the proximal operation implicitly. To further enhance the transfer of feature information across layers, we introduce the cross-layer feature attention fusion module into the TPGD-Net. Our simulation results on the Saleh-Valenzuela channel model and the DeepMIMO dataset demonstrate the superior performance of TPGD-Net compared to state-of-the-art mmWave channel estimators.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Communications systems ; Iterative methods ; Machine learning ; Millimeter waves ; MIMO communication ; Neural networks ; Signal reconstruction</subject><ispartof>arXiv.org, 2023-03</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Zheng, Peicong</creatorcontrib><creatorcontrib>Lyu, Xuantao</creatorcontrib><creatorcontrib>Gong, Yi</creatorcontrib><title>Trainable Proximal Gradient Descent Based Channel Estimation for mmWave Massive MIMO Systems</title><title>arXiv.org</title><description>In this letter, we address the problem of millimeter-Wave channel estimation in massive MIMO communication systems. Leveraging the sparsity of the mmWave channel in the beamspace, we formulate the estimation problem as a sparse signal recovery problem. To this end, we propose a deep learning based trainable proximal gradient descent network (TPGD-Net). The TPGD-Net unfolds the iterative proximal gradient descent (PGD) algorithm into a layer-wise network, with the gradient descent step size set as a trainable parameter. Additionally, we replace the proximal operator in the PGD algorithm with a neural network that exploits data-driven prior channel information to perform the proximal operation implicitly. To further enhance the transfer of feature information across layers, we introduce the cross-layer feature attention fusion module into the TPGD-Net. Our simulation results on the Saleh-Valenzuela channel model and the DeepMIMO dataset demonstrate the superior performance of TPGD-Net compared to state-of-the-art mmWave channel estimators.</description><subject>Algorithms</subject><subject>Communications systems</subject><subject>Iterative methods</subject><subject>Machine learning</subject><subject>Millimeter waves</subject><subject>MIMO communication</subject><subject>Neural networks</subject><subject>Signal reconstruction</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyt8KAUEUgPFJKRve4ZTrrXHW4tr6eyHKlhulgyOz7c4wZ4i3R3kAV7-L76upCJOkGw97iA3VFim01tgfYJomkdrlnoylQ8mw9u5pKiph5ulk2AYYsxy_jkj4BNmFrOUSJhI-WzDOwtl5qKotPRiWJGK-LpYr2LwkcCUtVT9TKdz-2VSd6STP5vHVu9udJewLd_f2k_Y4SIeoEbs6-e96A3lkQrg</recordid><startdate>20230306</startdate><enddate>20230306</enddate><creator>Zheng, Peicong</creator><creator>Lyu, Xuantao</creator><creator>Gong, Yi</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230306</creationdate><title>Trainable Proximal Gradient Descent Based Channel Estimation for mmWave Massive MIMO Systems</title><author>Zheng, Peicong ; Lyu, Xuantao ; Gong, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27582022103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Communications systems</topic><topic>Iterative methods</topic><topic>Machine learning</topic><topic>Millimeter waves</topic><topic>MIMO communication</topic><topic>Neural networks</topic><topic>Signal reconstruction</topic><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Peicong</creatorcontrib><creatorcontrib>Lyu, Xuantao</creatorcontrib><creatorcontrib>Gong, Yi</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Peicong</au><au>Lyu, Xuantao</au><au>Gong, Yi</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Trainable Proximal Gradient Descent Based Channel Estimation for mmWave Massive MIMO Systems</atitle><jtitle>arXiv.org</jtitle><date>2023-03-06</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>In this letter, we address the problem of millimeter-Wave channel estimation in massive MIMO communication systems. Leveraging the sparsity of the mmWave channel in the beamspace, we formulate the estimation problem as a sparse signal recovery problem. To this end, we propose a deep learning based trainable proximal gradient descent network (TPGD-Net). The TPGD-Net unfolds the iterative proximal gradient descent (PGD) algorithm into a layer-wise network, with the gradient descent step size set as a trainable parameter. Additionally, we replace the proximal operator in the PGD algorithm with a neural network that exploits data-driven prior channel information to perform the proximal operation implicitly. To further enhance the transfer of feature information across layers, we introduce the cross-layer feature attention fusion module into the TPGD-Net. Our simulation results on the Saleh-Valenzuela channel model and the DeepMIMO dataset demonstrate the superior performance of TPGD-Net compared to state-of-the-art mmWave channel estimators.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2758202210
source Freely Accessible Journals
subjects Algorithms
Communications systems
Iterative methods
Machine learning
Millimeter waves
MIMO communication
Neural networks
Signal reconstruction
title Trainable Proximal Gradient Descent Based Channel Estimation for mmWave Massive MIMO Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T19%3A28%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Trainable%20Proximal%20Gradient%20Descent%20Based%20Channel%20Estimation%20for%20mmWave%20Massive%20MIMO%20Systems&rft.jtitle=arXiv.org&rft.au=Zheng,%20Peicong&rft.date=2023-03-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2758202210%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2758202210&rft_id=info:pmid/&rfr_iscdi=true