Trainable Proximal Gradient Descent Based Channel Estimation for mmWave Massive MIMO Systems
In this letter, we address the problem of millimeter-Wave channel estimation in massive MIMO communication systems. Leveraging the sparsity of the mmWave channel in the beamspace, we formulate the estimation problem as a sparse signal recovery problem. To this end, we propose a deep learning based t...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-03 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Zheng, Peicong Lyu, Xuantao Gong, Yi |
description | In this letter, we address the problem of millimeter-Wave channel estimation in massive MIMO communication systems. Leveraging the sparsity of the mmWave channel in the beamspace, we formulate the estimation problem as a sparse signal recovery problem. To this end, we propose a deep learning based trainable proximal gradient descent network (TPGD-Net). The TPGD-Net unfolds the iterative proximal gradient descent (PGD) algorithm into a layer-wise network, with the gradient descent step size set as a trainable parameter. Additionally, we replace the proximal operator in the PGD algorithm with a neural network that exploits data-driven prior channel information to perform the proximal operation implicitly. To further enhance the transfer of feature information across layers, we introduce the cross-layer feature attention fusion module into the TPGD-Net. Our simulation results on the Saleh-Valenzuela channel model and the DeepMIMO dataset demonstrate the superior performance of TPGD-Net compared to state-of-the-art mmWave channel estimators. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2758202210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2758202210</sourcerecordid><originalsourceid>FETCH-proquest_journals_27582022103</originalsourceid><addsrcrecordid>eNqNyt8KAUEUgPFJKRve4ZTrrXHW4tr6eyHKlhulgyOz7c4wZ4i3R3kAV7-L76upCJOkGw97iA3VFim01tgfYJomkdrlnoylQ8mw9u5pKiph5ulk2AYYsxy_jkj4BNmFrOUSJhI-WzDOwtl5qKotPRiWJGK-LpYr2LwkcCUtVT9TKdz-2VSd6STP5vHVu9udJewLd_f2k_Y4SIeoEbs6-e96A3lkQrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2758202210</pqid></control><display><type>article</type><title>Trainable Proximal Gradient Descent Based Channel Estimation for mmWave Massive MIMO Systems</title><source>Freely Accessible Journals</source><creator>Zheng, Peicong ; Lyu, Xuantao ; Gong, Yi</creator><creatorcontrib>Zheng, Peicong ; Lyu, Xuantao ; Gong, Yi</creatorcontrib><description>In this letter, we address the problem of millimeter-Wave channel estimation in massive MIMO communication systems. Leveraging the sparsity of the mmWave channel in the beamspace, we formulate the estimation problem as a sparse signal recovery problem. To this end, we propose a deep learning based trainable proximal gradient descent network (TPGD-Net). The TPGD-Net unfolds the iterative proximal gradient descent (PGD) algorithm into a layer-wise network, with the gradient descent step size set as a trainable parameter. Additionally, we replace the proximal operator in the PGD algorithm with a neural network that exploits data-driven prior channel information to perform the proximal operation implicitly. To further enhance the transfer of feature information across layers, we introduce the cross-layer feature attention fusion module into the TPGD-Net. Our simulation results on the Saleh-Valenzuela channel model and the DeepMIMO dataset demonstrate the superior performance of TPGD-Net compared to state-of-the-art mmWave channel estimators.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Communications systems ; Iterative methods ; Machine learning ; Millimeter waves ; MIMO communication ; Neural networks ; Signal reconstruction</subject><ispartof>arXiv.org, 2023-03</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Zheng, Peicong</creatorcontrib><creatorcontrib>Lyu, Xuantao</creatorcontrib><creatorcontrib>Gong, Yi</creatorcontrib><title>Trainable Proximal Gradient Descent Based Channel Estimation for mmWave Massive MIMO Systems</title><title>arXiv.org</title><description>In this letter, we address the problem of millimeter-Wave channel estimation in massive MIMO communication systems. Leveraging the sparsity of the mmWave channel in the beamspace, we formulate the estimation problem as a sparse signal recovery problem. To this end, we propose a deep learning based trainable proximal gradient descent network (TPGD-Net). The TPGD-Net unfolds the iterative proximal gradient descent (PGD) algorithm into a layer-wise network, with the gradient descent step size set as a trainable parameter. Additionally, we replace the proximal operator in the PGD algorithm with a neural network that exploits data-driven prior channel information to perform the proximal operation implicitly. To further enhance the transfer of feature information across layers, we introduce the cross-layer feature attention fusion module into the TPGD-Net. Our simulation results on the Saleh-Valenzuela channel model and the DeepMIMO dataset demonstrate the superior performance of TPGD-Net compared to state-of-the-art mmWave channel estimators.</description><subject>Algorithms</subject><subject>Communications systems</subject><subject>Iterative methods</subject><subject>Machine learning</subject><subject>Millimeter waves</subject><subject>MIMO communication</subject><subject>Neural networks</subject><subject>Signal reconstruction</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyt8KAUEUgPFJKRve4ZTrrXHW4tr6eyHKlhulgyOz7c4wZ4i3R3kAV7-L76upCJOkGw97iA3VFim01tgfYJomkdrlnoylQ8mw9u5pKiph5ulk2AYYsxy_jkj4BNmFrOUSJhI-WzDOwtl5qKotPRiWJGK-LpYr2LwkcCUtVT9TKdz-2VSd6STP5vHVu9udJewLd_f2k_Y4SIeoEbs6-e96A3lkQrg</recordid><startdate>20230306</startdate><enddate>20230306</enddate><creator>Zheng, Peicong</creator><creator>Lyu, Xuantao</creator><creator>Gong, Yi</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230306</creationdate><title>Trainable Proximal Gradient Descent Based Channel Estimation for mmWave Massive MIMO Systems</title><author>Zheng, Peicong ; Lyu, Xuantao ; Gong, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27582022103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Communications systems</topic><topic>Iterative methods</topic><topic>Machine learning</topic><topic>Millimeter waves</topic><topic>MIMO communication</topic><topic>Neural networks</topic><topic>Signal reconstruction</topic><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Peicong</creatorcontrib><creatorcontrib>Lyu, Xuantao</creatorcontrib><creatorcontrib>Gong, Yi</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Peicong</au><au>Lyu, Xuantao</au><au>Gong, Yi</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Trainable Proximal Gradient Descent Based Channel Estimation for mmWave Massive MIMO Systems</atitle><jtitle>arXiv.org</jtitle><date>2023-03-06</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>In this letter, we address the problem of millimeter-Wave channel estimation in massive MIMO communication systems. Leveraging the sparsity of the mmWave channel in the beamspace, we formulate the estimation problem as a sparse signal recovery problem. To this end, we propose a deep learning based trainable proximal gradient descent network (TPGD-Net). The TPGD-Net unfolds the iterative proximal gradient descent (PGD) algorithm into a layer-wise network, with the gradient descent step size set as a trainable parameter. Additionally, we replace the proximal operator in the PGD algorithm with a neural network that exploits data-driven prior channel information to perform the proximal operation implicitly. To further enhance the transfer of feature information across layers, we introduce the cross-layer feature attention fusion module into the TPGD-Net. Our simulation results on the Saleh-Valenzuela channel model and the DeepMIMO dataset demonstrate the superior performance of TPGD-Net compared to state-of-the-art mmWave channel estimators.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2758202210 |
source | Freely Accessible Journals |
subjects | Algorithms Communications systems Iterative methods Machine learning Millimeter waves MIMO communication Neural networks Signal reconstruction |
title | Trainable Proximal Gradient Descent Based Channel Estimation for mmWave Massive MIMO Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T19%3A28%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Trainable%20Proximal%20Gradient%20Descent%20Based%20Channel%20Estimation%20for%20mmWave%20Massive%20MIMO%20Systems&rft.jtitle=arXiv.org&rft.au=Zheng,%20Peicong&rft.date=2023-03-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2758202210%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2758202210&rft_id=info:pmid/&rfr_iscdi=true |