Experimental realization of deterministic and selective photon addition in a bosonic mode assisted by an ancillary qubit

Bosonic quantum error correcting codes are primarily designed to protect against single-photon loss. To correct for this type of error, one can encode the logical qubit in code spaces with a definite photon parity, such as cat codes or binomial codes. Error correction requires a recovery operation t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-12
Hauptverfasser: Kudra, Marina, Abad, Tahereh, Kervinen, Mikael, Eriksson, Axel M, Quijandría, Fernando, Delsing, Per, Gasparinetti, Simone
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kudra, Marina
Abad, Tahereh
Kervinen, Mikael
Eriksson, Axel M
Quijandría, Fernando
Delsing, Per
Gasparinetti, Simone
description Bosonic quantum error correcting codes are primarily designed to protect against single-photon loss. To correct for this type of error, one can encode the logical qubit in code spaces with a definite photon parity, such as cat codes or binomial codes. Error correction requires a recovery operation that maps the error states -- which have opposite parity -- back onto the code states. Here, we realize a collection of photon-number-selective, simultaneous photon addition operations on a bosonic mode, a microwave cavity, assisted by a superconducting qubit. These operations are implemented as two-photon transitions that excite the cavity and the qubit at the same time. The additional degree of freedom of the qubit makes it possible to implement a coherent, unidirectional mapping between spaces of opposite photon parity. We present the successful experimental implementation of the drives and the phase control they enable on superpositions of Fock states. The presented technique, when supplemented with qubit reset, is suitable for autonomous quantum error correction in bosonic systems, and, more generally, opens the possibility to realize a range of non-unitary transformations on a bosonic mode.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2758202053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2758202053</sourcerecordid><originalsourceid>FETCH-proquest_journals_27582020533</originalsourceid><addsrcrecordid>eNqNi1EKwjAQRIMgKNo7LPgtxMSq_6J4AP9L2mxxJU1qNhXr6Q3iAYSBGZj3JmKutN6sD1ulZqJgvksp1W6vylLPxev06jFShz4ZBxGNo7dJFDyEFiwmjB154kQNGG-B0WGT6InQ30LKlLGWvjjlDXXg4DPaBYtgmLOIFuoxuzkNOWfiCI-hprQU09Y4xuLXC7E6n67Hy7qP4TEgp-oehujzVal9eVBSyVLr_6gPIr9OrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2758202053</pqid></control><display><type>article</type><title>Experimental realization of deterministic and selective photon addition in a bosonic mode assisted by an ancillary qubit</title><source>Free E- Journals</source><creator>Kudra, Marina ; Abad, Tahereh ; Kervinen, Mikael ; Eriksson, Axel M ; Quijandría, Fernando ; Delsing, Per ; Gasparinetti, Simone</creator><creatorcontrib>Kudra, Marina ; Abad, Tahereh ; Kervinen, Mikael ; Eriksson, Axel M ; Quijandría, Fernando ; Delsing, Per ; Gasparinetti, Simone</creatorcontrib><description>Bosonic quantum error correcting codes are primarily designed to protect against single-photon loss. To correct for this type of error, one can encode the logical qubit in code spaces with a definite photon parity, such as cat codes or binomial codes. Error correction requires a recovery operation that maps the error states -- which have opposite parity -- back onto the code states. Here, we realize a collection of photon-number-selective, simultaneous photon addition operations on a bosonic mode, a microwave cavity, assisted by a superconducting qubit. These operations are implemented as two-photon transitions that excite the cavity and the qubit at the same time. The additional degree of freedom of the qubit makes it possible to implement a coherent, unidirectional mapping between spaces of opposite photon parity. We present the successful experimental implementation of the drives and the phase control they enable on superpositions of Fock states. The presented technique, when supplemented with qubit reset, is suitable for autonomous quantum error correction in bosonic systems, and, more generally, opens the possibility to realize a range of non-unitary transformations on a bosonic mode.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Codes ; Error correcting codes ; Error correction ; Error correction &amp; detection ; Fock state ; Parity ; Phase control ; Photons ; Qubits (quantum computing)</subject><ispartof>arXiv.org, 2022-12</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Kudra, Marina</creatorcontrib><creatorcontrib>Abad, Tahereh</creatorcontrib><creatorcontrib>Kervinen, Mikael</creatorcontrib><creatorcontrib>Eriksson, Axel M</creatorcontrib><creatorcontrib>Quijandría, Fernando</creatorcontrib><creatorcontrib>Delsing, Per</creatorcontrib><creatorcontrib>Gasparinetti, Simone</creatorcontrib><title>Experimental realization of deterministic and selective photon addition in a bosonic mode assisted by an ancillary qubit</title><title>arXiv.org</title><description>Bosonic quantum error correcting codes are primarily designed to protect against single-photon loss. To correct for this type of error, one can encode the logical qubit in code spaces with a definite photon parity, such as cat codes or binomial codes. Error correction requires a recovery operation that maps the error states -- which have opposite parity -- back onto the code states. Here, we realize a collection of photon-number-selective, simultaneous photon addition operations on a bosonic mode, a microwave cavity, assisted by a superconducting qubit. These operations are implemented as two-photon transitions that excite the cavity and the qubit at the same time. The additional degree of freedom of the qubit makes it possible to implement a coherent, unidirectional mapping between spaces of opposite photon parity. We present the successful experimental implementation of the drives and the phase control they enable on superpositions of Fock states. The presented technique, when supplemented with qubit reset, is suitable for autonomous quantum error correction in bosonic systems, and, more generally, opens the possibility to realize a range of non-unitary transformations on a bosonic mode.</description><subject>Codes</subject><subject>Error correcting codes</subject><subject>Error correction</subject><subject>Error correction &amp; detection</subject><subject>Fock state</subject><subject>Parity</subject><subject>Phase control</subject><subject>Photons</subject><subject>Qubits (quantum computing)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNi1EKwjAQRIMgKNo7LPgtxMSq_6J4AP9L2mxxJU1qNhXr6Q3iAYSBGZj3JmKutN6sD1ulZqJgvksp1W6vylLPxev06jFShz4ZBxGNo7dJFDyEFiwmjB154kQNGG-B0WGT6InQ30LKlLGWvjjlDXXg4DPaBYtgmLOIFuoxuzkNOWfiCI-hprQU09Y4xuLXC7E6n67Hy7qP4TEgp-oehujzVal9eVBSyVLr_6gPIr9OrQ</recordid><startdate>20221222</startdate><enddate>20221222</enddate><creator>Kudra, Marina</creator><creator>Abad, Tahereh</creator><creator>Kervinen, Mikael</creator><creator>Eriksson, Axel M</creator><creator>Quijandría, Fernando</creator><creator>Delsing, Per</creator><creator>Gasparinetti, Simone</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221222</creationdate><title>Experimental realization of deterministic and selective photon addition in a bosonic mode assisted by an ancillary qubit</title><author>Kudra, Marina ; Abad, Tahereh ; Kervinen, Mikael ; Eriksson, Axel M ; Quijandría, Fernando ; Delsing, Per ; Gasparinetti, Simone</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27582020533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Codes</topic><topic>Error correcting codes</topic><topic>Error correction</topic><topic>Error correction &amp; detection</topic><topic>Fock state</topic><topic>Parity</topic><topic>Phase control</topic><topic>Photons</topic><topic>Qubits (quantum computing)</topic><toplevel>online_resources</toplevel><creatorcontrib>Kudra, Marina</creatorcontrib><creatorcontrib>Abad, Tahereh</creatorcontrib><creatorcontrib>Kervinen, Mikael</creatorcontrib><creatorcontrib>Eriksson, Axel M</creatorcontrib><creatorcontrib>Quijandría, Fernando</creatorcontrib><creatorcontrib>Delsing, Per</creatorcontrib><creatorcontrib>Gasparinetti, Simone</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kudra, Marina</au><au>Abad, Tahereh</au><au>Kervinen, Mikael</au><au>Eriksson, Axel M</au><au>Quijandría, Fernando</au><au>Delsing, Per</au><au>Gasparinetti, Simone</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Experimental realization of deterministic and selective photon addition in a bosonic mode assisted by an ancillary qubit</atitle><jtitle>arXiv.org</jtitle><date>2022-12-22</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Bosonic quantum error correcting codes are primarily designed to protect against single-photon loss. To correct for this type of error, one can encode the logical qubit in code spaces with a definite photon parity, such as cat codes or binomial codes. Error correction requires a recovery operation that maps the error states -- which have opposite parity -- back onto the code states. Here, we realize a collection of photon-number-selective, simultaneous photon addition operations on a bosonic mode, a microwave cavity, assisted by a superconducting qubit. These operations are implemented as two-photon transitions that excite the cavity and the qubit at the same time. The additional degree of freedom of the qubit makes it possible to implement a coherent, unidirectional mapping between spaces of opposite photon parity. We present the successful experimental implementation of the drives and the phase control they enable on superpositions of Fock states. The presented technique, when supplemented with qubit reset, is suitable for autonomous quantum error correction in bosonic systems, and, more generally, opens the possibility to realize a range of non-unitary transformations on a bosonic mode.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2758202053
source Free E- Journals
subjects Codes
Error correcting codes
Error correction
Error correction & detection
Fock state
Parity
Phase control
Photons
Qubits (quantum computing)
title Experimental realization of deterministic and selective photon addition in a bosonic mode assisted by an ancillary qubit
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T10%3A46%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Experimental%20realization%20of%20deterministic%20and%20selective%20photon%20addition%20in%20a%20bosonic%20mode%20assisted%20by%20an%20ancillary%20qubit&rft.jtitle=arXiv.org&rft.au=Kudra,%20Marina&rft.date=2022-12-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2758202053%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2758202053&rft_id=info:pmid/&rfr_iscdi=true