Consensus in discrete-time one-sided Lipschitz nonlinear multi-agent systems with time-varying communication delay
This paper discusses consensus in discrete-time nonlinear multi-agent systems with time-varying delay in a directed communication topology. Since each agent can obtain information only from its neighbouring agents, for the purpose of analysis, a consensus protocol is proposed that considers the rela...
Gespeichert in:
Veröffentlicht in: | European journal of control 2022-05, Vol.65, p.100638, Article 100638 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 100638 |
container_title | European journal of control |
container_volume | 65 |
creator | Tian, Yun Guo, Yanping Ji, Yude |
description | This paper discusses consensus in discrete-time nonlinear multi-agent systems with time-varying delay in a directed communication topology. Since each agent can obtain information only from its neighbouring agents, for the purpose of analysis, a consensus protocol is proposed that considers the relative position information between the leader and followers and between neighbouring followers under time-varying communication delay. This nonlinear problem is solved by employing nonlinear behaviour based on the one-sided Lipschitz method. By constructing an appropriate Lyapunov-Krasovskii function, the consensus criterion for the leader-following problem is established in terms of the linear matrix inequality (LMI) framework. Furthermore, the solution of gain matrix is addressed by utilizing the cone complementarity linearization (CCL) algorithm. The results of a numerical simulation indicate that this method can be used to effectively solve this problem. |
doi_str_mv | 10.1016/j.ejcon.2022.100638 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2758089694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0947358022000310</els_id><sourcerecordid>2758089694</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-e7e1f134555c9cb7fdfeb6abe459efe42ee7de9fa6f99d50d289769f37c579b53</originalsourceid><addsrcrecordid>eNp9kMFqGzEQhkVpoSbNE_Qi6FmutFqtrEMOwSRNwdBLexZraZTM4pUcSZvgPH3kuufOHAaG-Wf--Qj5KvhacDF8n9YwuRTXHe-61uGD3HwgK9FLxdSgxUey4qbXTKoN_0yuS5l4CylFyxXJ2xQLxLIUipF6LC5DBVZxBpoisIIePN3hsbgnrG80pnjACGOm83KoyMZHiJWWU6kwF_qK9YmetexlzCeMj9SleV4iurFiavvhMJ6-kE9hPBS4_levyJ_7u9_bB7b79ePn9nbHXDNXGWgQQcheKeWM2-vgA-yHcQ-9MhCg7wC0BxPGIRjjFffdxujBBKmd0mav5BX5dtl7zOl5gVLtlJYc20nb6QZjYwbTtyl5mXI5lZIh2GPGubm3gtszXzvZv3ztma-98G2qm4sK2gMvCNkWhxAdeMzgqvUJ_6t_B0eqh64</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2758089694</pqid></control><display><type>article</type><title>Consensus in discrete-time one-sided Lipschitz nonlinear multi-agent systems with time-varying communication delay</title><source>Alma/SFX Local Collection</source><creator>Tian, Yun ; Guo, Yanping ; Ji, Yude</creator><creatorcontrib>Tian, Yun ; Guo, Yanping ; Ji, Yude</creatorcontrib><description>This paper discusses consensus in discrete-time nonlinear multi-agent systems with time-varying delay in a directed communication topology. Since each agent can obtain information only from its neighbouring agents, for the purpose of analysis, a consensus protocol is proposed that considers the relative position information between the leader and followers and between neighbouring followers under time-varying communication delay. This nonlinear problem is solved by employing nonlinear behaviour based on the one-sided Lipschitz method. By constructing an appropriate Lyapunov-Krasovskii function, the consensus criterion for the leader-following problem is established in terms of the linear matrix inequality (LMI) framework. Furthermore, the solution of gain matrix is addressed by utilizing the cone complementarity linearization (CCL) algorithm. The results of a numerical simulation indicate that this method can be used to effectively solve this problem.</description><identifier>ISSN: 0947-3580</identifier><identifier>EISSN: 1435-5671</identifier><identifier>DOI: 10.1016/j.ejcon.2022.100638</identifier><language>eng</language><publisher>Philadelphia: Elsevier Ltd</publisher><subject>Algorithms ; Communication ; Consensus problem ; Control algorithms ; Control theory ; Delay ; Discrete time systems ; Discrete-time multi-agent systems ; Linear matrix inequalities ; Mathematical analysis ; Multiagent systems ; Network topologies ; Nonlinear systems ; One-sided Lipschitz condition ; Time-varying delay ; Topology</subject><ispartof>European journal of control, 2022-05, Vol.65, p.100638, Article 100638</ispartof><rights>2022 European Control Association</rights><rights>2022. European Control Association</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-e7e1f134555c9cb7fdfeb6abe459efe42ee7de9fa6f99d50d289769f37c579b53</citedby><cites>FETCH-LOGICAL-c331t-e7e1f134555c9cb7fdfeb6abe459efe42ee7de9fa6f99d50d289769f37c579b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Tian, Yun</creatorcontrib><creatorcontrib>Guo, Yanping</creatorcontrib><creatorcontrib>Ji, Yude</creatorcontrib><title>Consensus in discrete-time one-sided Lipschitz nonlinear multi-agent systems with time-varying communication delay</title><title>European journal of control</title><description>This paper discusses consensus in discrete-time nonlinear multi-agent systems with time-varying delay in a directed communication topology. Since each agent can obtain information only from its neighbouring agents, for the purpose of analysis, a consensus protocol is proposed that considers the relative position information between the leader and followers and between neighbouring followers under time-varying communication delay. This nonlinear problem is solved by employing nonlinear behaviour based on the one-sided Lipschitz method. By constructing an appropriate Lyapunov-Krasovskii function, the consensus criterion for the leader-following problem is established in terms of the linear matrix inequality (LMI) framework. Furthermore, the solution of gain matrix is addressed by utilizing the cone complementarity linearization (CCL) algorithm. The results of a numerical simulation indicate that this method can be used to effectively solve this problem.</description><subject>Algorithms</subject><subject>Communication</subject><subject>Consensus problem</subject><subject>Control algorithms</subject><subject>Control theory</subject><subject>Delay</subject><subject>Discrete time systems</subject><subject>Discrete-time multi-agent systems</subject><subject>Linear matrix inequalities</subject><subject>Mathematical analysis</subject><subject>Multiagent systems</subject><subject>Network topologies</subject><subject>Nonlinear systems</subject><subject>One-sided Lipschitz condition</subject><subject>Time-varying delay</subject><subject>Topology</subject><issn>0947-3580</issn><issn>1435-5671</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kMFqGzEQhkVpoSbNE_Qi6FmutFqtrEMOwSRNwdBLexZraZTM4pUcSZvgPH3kuufOHAaG-Wf--Qj5KvhacDF8n9YwuRTXHe-61uGD3HwgK9FLxdSgxUey4qbXTKoN_0yuS5l4CylFyxXJ2xQLxLIUipF6LC5DBVZxBpoisIIePN3hsbgnrG80pnjACGOm83KoyMZHiJWWU6kwF_qK9YmetexlzCeMj9SleV4iurFiavvhMJ6-kE9hPBS4_levyJ_7u9_bB7b79ePn9nbHXDNXGWgQQcheKeWM2-vgA-yHcQ-9MhCg7wC0BxPGIRjjFffdxujBBKmd0mav5BX5dtl7zOl5gVLtlJYc20nb6QZjYwbTtyl5mXI5lZIh2GPGubm3gtszXzvZv3ztma-98G2qm4sK2gMvCNkWhxAdeMzgqvUJ_6t_B0eqh64</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Tian, Yun</creator><creator>Guo, Yanping</creator><creator>Ji, Yude</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>202205</creationdate><title>Consensus in discrete-time one-sided Lipschitz nonlinear multi-agent systems with time-varying communication delay</title><author>Tian, Yun ; Guo, Yanping ; Ji, Yude</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-e7e1f134555c9cb7fdfeb6abe459efe42ee7de9fa6f99d50d289769f37c579b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Communication</topic><topic>Consensus problem</topic><topic>Control algorithms</topic><topic>Control theory</topic><topic>Delay</topic><topic>Discrete time systems</topic><topic>Discrete-time multi-agent systems</topic><topic>Linear matrix inequalities</topic><topic>Mathematical analysis</topic><topic>Multiagent systems</topic><topic>Network topologies</topic><topic>Nonlinear systems</topic><topic>One-sided Lipschitz condition</topic><topic>Time-varying delay</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Yun</creatorcontrib><creatorcontrib>Guo, Yanping</creatorcontrib><creatorcontrib>Ji, Yude</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>European journal of control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Yun</au><au>Guo, Yanping</au><au>Ji, Yude</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Consensus in discrete-time one-sided Lipschitz nonlinear multi-agent systems with time-varying communication delay</atitle><jtitle>European journal of control</jtitle><date>2022-05</date><risdate>2022</risdate><volume>65</volume><spage>100638</spage><pages>100638-</pages><artnum>100638</artnum><issn>0947-3580</issn><eissn>1435-5671</eissn><abstract>This paper discusses consensus in discrete-time nonlinear multi-agent systems with time-varying delay in a directed communication topology. Since each agent can obtain information only from its neighbouring agents, for the purpose of analysis, a consensus protocol is proposed that considers the relative position information between the leader and followers and between neighbouring followers under time-varying communication delay. This nonlinear problem is solved by employing nonlinear behaviour based on the one-sided Lipschitz method. By constructing an appropriate Lyapunov-Krasovskii function, the consensus criterion for the leader-following problem is established in terms of the linear matrix inequality (LMI) framework. Furthermore, the solution of gain matrix is addressed by utilizing the cone complementarity linearization (CCL) algorithm. The results of a numerical simulation indicate that this method can be used to effectively solve this problem.</abstract><cop>Philadelphia</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ejcon.2022.100638</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-3580 |
ispartof | European journal of control, 2022-05, Vol.65, p.100638, Article 100638 |
issn | 0947-3580 1435-5671 |
language | eng |
recordid | cdi_proquest_journals_2758089694 |
source | Alma/SFX Local Collection |
subjects | Algorithms Communication Consensus problem Control algorithms Control theory Delay Discrete time systems Discrete-time multi-agent systems Linear matrix inequalities Mathematical analysis Multiagent systems Network topologies Nonlinear systems One-sided Lipschitz condition Time-varying delay Topology |
title | Consensus in discrete-time one-sided Lipschitz nonlinear multi-agent systems with time-varying communication delay |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A57%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Consensus%20in%20discrete-time%20one-sided%20Lipschitz%20nonlinear%20multi-agent%20systems%20with%20time-varying%20communication%20delay&rft.jtitle=European%20journal%20of%20control&rft.au=Tian,%20Yun&rft.date=2022-05&rft.volume=65&rft.spage=100638&rft.pages=100638-&rft.artnum=100638&rft.issn=0947-3580&rft.eissn=1435-5671&rft_id=info:doi/10.1016/j.ejcon.2022.100638&rft_dat=%3Cproquest_cross%3E2758089694%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2758089694&rft_id=info:pmid/&rft_els_id=S0947358022000310&rfr_iscdi=true |