A LASSO-Based Prediction Model for Child Influenza Epidemics: A Case Study of Shanghai, China

Child influenza is an acute infectious disease that places substantial burden on children and their families. Real-time accurate prediction of child influenza epidemics can aid scientific and timely decision-making that may reduce the harm done to children infected with influenza. Several models hav...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2022-12, Vol.2022, p.1-14
Hauptverfasser: Zhu, Jin, Xu, Yu, Yu, Guangjun, Gao, Jie, Liu, Yuan, Cheng, Dayu, Song, Ci, Chen, Jie, Pei, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2022
creator Zhu, Jin
Xu, Yu
Yu, Guangjun
Gao, Jie
Liu, Yuan
Cheng, Dayu
Song, Ci
Chen, Jie
Pei, Tao
description Child influenza is an acute infectious disease that places substantial burden on children and their families. Real-time accurate prediction of child influenza epidemics can aid scientific and timely decision-making that may reduce the harm done to children infected with influenza. Several models have been proposed to predict influenza epidemics. However, most existing studies focus on adult influenza prediction. This study demonstrates the feasibility of using the LASSO (least absolute shrinkage and selection operator) model to predict influenza-like illness (ILI) levels in children between 2017 and 2020 in Shanghai, China. The performance of the LASSO model was compared with that of other statistical influenza-prediction techniques, including autoregressive integrated moving average (ARIMA), random forest (RF), ordinary least squares (OLS), and long short-term memory (LSTM). The LASSO model was observed to exhibit superior performance compared to the other candidate models. Owing to the variable shrinkage and low-variance properties of LASSO, it eliminated unimportant features and avoided overfitting. The experimental results suggest that the LASSO model can provide useful guidance for short-term child influenza prevention and control for schools, hospitals, and governments.
doi_str_mv 10.1155/2022/1775630
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2758026984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2758026984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-3e6cd5926bee6faed0950ca841a85601b18687b71eeab86a92051bf5b38fddf03</originalsourceid><addsrcrecordid>eNp9kEFLwzAUx4MoOKc3P0DAo6vLS5s09VbL1MFkQhW8SEmbxGV07UxaZH56O7azp_87_P7v8X4IXQO5A2BsSgmlU4hjxkNygkYwZMAgik-HmdAoABp-nKML79eEUGAgRugzxYs0z5fBg_Ra4Venla062zb4pVW6xqZ1OFvZWuF5Y-peN78Sz7ZW6Y2t_D1OcTb0cN71aodbg_OVbL5W0k72pUZeojMja6-vjjlG74-zt-w5WCyf5lm6CCqaRF0Qal4pllBeas2N1IokjFRSRCAF4wRKEFzEZQxay1JwmVDCoDSsDIVRypBwjG4Oe7eu_e6174p127tmOFnQmAlCeSKigZocqMq13jttiq2zG-l2BZBiL7DYCyyOAgf89oAPnyj5Y_-n_wDIvW2r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2758026984</pqid></control><display><type>article</type><title>A LASSO-Based Prediction Model for Child Influenza Epidemics: A Case Study of Shanghai, China</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Zhu, Jin ; Xu, Yu ; Yu, Guangjun ; Gao, Jie ; Liu, Yuan ; Cheng, Dayu ; Song, Ci ; Chen, Jie ; Pei, Tao</creator><contributor>Shah, Zahir ; Zahir Shah</contributor><creatorcontrib>Zhu, Jin ; Xu, Yu ; Yu, Guangjun ; Gao, Jie ; Liu, Yuan ; Cheng, Dayu ; Song, Ci ; Chen, Jie ; Pei, Tao ; Shah, Zahir ; Zahir Shah</creatorcontrib><description>Child influenza is an acute infectious disease that places substantial burden on children and their families. Real-time accurate prediction of child influenza epidemics can aid scientific and timely decision-making that may reduce the harm done to children infected with influenza. Several models have been proposed to predict influenza epidemics. However, most existing studies focus on adult influenza prediction. This study demonstrates the feasibility of using the LASSO (least absolute shrinkage and selection operator) model to predict influenza-like illness (ILI) levels in children between 2017 and 2020 in Shanghai, China. The performance of the LASSO model was compared with that of other statistical influenza-prediction techniques, including autoregressive integrated moving average (ARIMA), random forest (RF), ordinary least squares (OLS), and long short-term memory (LSTM). The LASSO model was observed to exhibit superior performance compared to the other candidate models. Owing to the variable shrinkage and low-variance properties of LASSO, it eliminated unimportant features and avoided overfitting. The experimental results suggest that the LASSO model can provide useful guidance for short-term child influenza prevention and control for schools, hospitals, and governments.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2022/1775630</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Age groups ; Autoregressive models ; Case studies ; Children ; Children &amp; youth ; Decision making ; Decision trees ; Epidemics ; Feasibility studies ; Hospitals ; Illnesses ; Infections ; Infectious diseases ; Influenza ; Nitrogen dioxide ; Pediatrics ; Pollutants ; Prediction models ; Respiratory diseases ; Statistical analysis ; Support vector machines</subject><ispartof>Mathematical problems in engineering, 2022-12, Vol.2022, p.1-14</ispartof><rights>Copyright © 2022 Jin Zhu et al.</rights><rights>Copyright © 2022 Jin Zhu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c294t-3e6cd5926bee6faed0950ca841a85601b18687b71eeab86a92051bf5b38fddf03</cites><orcidid>0000-0002-5311-8761 ; 0000-0003-1143-1730</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Shah, Zahir</contributor><contributor>Zahir Shah</contributor><creatorcontrib>Zhu, Jin</creatorcontrib><creatorcontrib>Xu, Yu</creatorcontrib><creatorcontrib>Yu, Guangjun</creatorcontrib><creatorcontrib>Gao, Jie</creatorcontrib><creatorcontrib>Liu, Yuan</creatorcontrib><creatorcontrib>Cheng, Dayu</creatorcontrib><creatorcontrib>Song, Ci</creatorcontrib><creatorcontrib>Chen, Jie</creatorcontrib><creatorcontrib>Pei, Tao</creatorcontrib><title>A LASSO-Based Prediction Model for Child Influenza Epidemics: A Case Study of Shanghai, China</title><title>Mathematical problems in engineering</title><description>Child influenza is an acute infectious disease that places substantial burden on children and their families. Real-time accurate prediction of child influenza epidemics can aid scientific and timely decision-making that may reduce the harm done to children infected with influenza. Several models have been proposed to predict influenza epidemics. However, most existing studies focus on adult influenza prediction. This study demonstrates the feasibility of using the LASSO (least absolute shrinkage and selection operator) model to predict influenza-like illness (ILI) levels in children between 2017 and 2020 in Shanghai, China. The performance of the LASSO model was compared with that of other statistical influenza-prediction techniques, including autoregressive integrated moving average (ARIMA), random forest (RF), ordinary least squares (OLS), and long short-term memory (LSTM). The LASSO model was observed to exhibit superior performance compared to the other candidate models. Owing to the variable shrinkage and low-variance properties of LASSO, it eliminated unimportant features and avoided overfitting. The experimental results suggest that the LASSO model can provide useful guidance for short-term child influenza prevention and control for schools, hospitals, and governments.</description><subject>Age groups</subject><subject>Autoregressive models</subject><subject>Case studies</subject><subject>Children</subject><subject>Children &amp; youth</subject><subject>Decision making</subject><subject>Decision trees</subject><subject>Epidemics</subject><subject>Feasibility studies</subject><subject>Hospitals</subject><subject>Illnesses</subject><subject>Infections</subject><subject>Infectious diseases</subject><subject>Influenza</subject><subject>Nitrogen dioxide</subject><subject>Pediatrics</subject><subject>Pollutants</subject><subject>Prediction models</subject><subject>Respiratory diseases</subject><subject>Statistical analysis</subject><subject>Support vector machines</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEFLwzAUx4MoOKc3P0DAo6vLS5s09VbL1MFkQhW8SEmbxGV07UxaZH56O7azp_87_P7v8X4IXQO5A2BsSgmlU4hjxkNygkYwZMAgik-HmdAoABp-nKML79eEUGAgRugzxYs0z5fBg_Ra4Venla062zb4pVW6xqZ1OFvZWuF5Y-peN78Sz7ZW6Y2t_D1OcTb0cN71aodbg_OVbL5W0k72pUZeojMja6-vjjlG74-zt-w5WCyf5lm6CCqaRF0Qal4pllBeas2N1IokjFRSRCAF4wRKEFzEZQxay1JwmVDCoDSsDIVRypBwjG4Oe7eu_e6174p127tmOFnQmAlCeSKigZocqMq13jttiq2zG-l2BZBiL7DYCyyOAgf89oAPnyj5Y_-n_wDIvW2r</recordid><startdate>20221212</startdate><enddate>20221212</enddate><creator>Zhu, Jin</creator><creator>Xu, Yu</creator><creator>Yu, Guangjun</creator><creator>Gao, Jie</creator><creator>Liu, Yuan</creator><creator>Cheng, Dayu</creator><creator>Song, Ci</creator><creator>Chen, Jie</creator><creator>Pei, Tao</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-5311-8761</orcidid><orcidid>https://orcid.org/0000-0003-1143-1730</orcidid></search><sort><creationdate>20221212</creationdate><title>A LASSO-Based Prediction Model for Child Influenza Epidemics: A Case Study of Shanghai, China</title><author>Zhu, Jin ; Xu, Yu ; Yu, Guangjun ; Gao, Jie ; Liu, Yuan ; Cheng, Dayu ; Song, Ci ; Chen, Jie ; Pei, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-3e6cd5926bee6faed0950ca841a85601b18687b71eeab86a92051bf5b38fddf03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Age groups</topic><topic>Autoregressive models</topic><topic>Case studies</topic><topic>Children</topic><topic>Children &amp; youth</topic><topic>Decision making</topic><topic>Decision trees</topic><topic>Epidemics</topic><topic>Feasibility studies</topic><topic>Hospitals</topic><topic>Illnesses</topic><topic>Infections</topic><topic>Infectious diseases</topic><topic>Influenza</topic><topic>Nitrogen dioxide</topic><topic>Pediatrics</topic><topic>Pollutants</topic><topic>Prediction models</topic><topic>Respiratory diseases</topic><topic>Statistical analysis</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Jin</creatorcontrib><creatorcontrib>Xu, Yu</creatorcontrib><creatorcontrib>Yu, Guangjun</creatorcontrib><creatorcontrib>Gao, Jie</creatorcontrib><creatorcontrib>Liu, Yuan</creatorcontrib><creatorcontrib>Cheng, Dayu</creatorcontrib><creatorcontrib>Song, Ci</creatorcontrib><creatorcontrib>Chen, Jie</creatorcontrib><creatorcontrib>Pei, Tao</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Jin</au><au>Xu, Yu</au><au>Yu, Guangjun</au><au>Gao, Jie</au><au>Liu, Yuan</au><au>Cheng, Dayu</au><au>Song, Ci</au><au>Chen, Jie</au><au>Pei, Tao</au><au>Shah, Zahir</au><au>Zahir Shah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A LASSO-Based Prediction Model for Child Influenza Epidemics: A Case Study of Shanghai, China</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2022-12-12</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Child influenza is an acute infectious disease that places substantial burden on children and their families. Real-time accurate prediction of child influenza epidemics can aid scientific and timely decision-making that may reduce the harm done to children infected with influenza. Several models have been proposed to predict influenza epidemics. However, most existing studies focus on adult influenza prediction. This study demonstrates the feasibility of using the LASSO (least absolute shrinkage and selection operator) model to predict influenza-like illness (ILI) levels in children between 2017 and 2020 in Shanghai, China. The performance of the LASSO model was compared with that of other statistical influenza-prediction techniques, including autoregressive integrated moving average (ARIMA), random forest (RF), ordinary least squares (OLS), and long short-term memory (LSTM). The LASSO model was observed to exhibit superior performance compared to the other candidate models. Owing to the variable shrinkage and low-variance properties of LASSO, it eliminated unimportant features and avoided overfitting. The experimental results suggest that the LASSO model can provide useful guidance for short-term child influenza prevention and control for schools, hospitals, and governments.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/1775630</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5311-8761</orcidid><orcidid>https://orcid.org/0000-0003-1143-1730</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2022-12, Vol.2022, p.1-14
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_2758026984
source EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection
subjects Age groups
Autoregressive models
Case studies
Children
Children & youth
Decision making
Decision trees
Epidemics
Feasibility studies
Hospitals
Illnesses
Infections
Infectious diseases
Influenza
Nitrogen dioxide
Pediatrics
Pollutants
Prediction models
Respiratory diseases
Statistical analysis
Support vector machines
title A LASSO-Based Prediction Model for Child Influenza Epidemics: A Case Study of Shanghai, China
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A59%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20LASSO-Based%20Prediction%20Model%20for%20Child%20Influenza%20Epidemics:%20A%20Case%20Study%20of%20Shanghai,%20China&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Zhu,%20Jin&rft.date=2022-12-12&rft.volume=2022&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2022/1775630&rft_dat=%3Cproquest_cross%3E2758026984%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2758026984&rft_id=info:pmid/&rfr_iscdi=true