Energy of Taut Strings Accompanying a Wiener Process and Random Walk in a Band of Variable Width

The kinetic energy of taut strings accompanying the trajectory of a Wiener process or a random walk in a band of growing width is considered. It is shown that under certain assumptions on the band width, the energy obeys the same strong law of large numbers as in the previously studied case of const...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2022-12, Vol.268 (5), p.573-588
Hauptverfasser: Blinova, D. I., Lifshits, M. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 588
container_issue 5
container_start_page 573
container_title Journal of mathematical sciences (New York, N.Y.)
container_volume 268
creator Blinova, D. I.
Lifshits, M. A.
description The kinetic energy of taut strings accompanying the trajectory of a Wiener process or a random walk in a band of growing width is considered. It is shown that under certain assumptions on the band width, the energy obeys the same strong law of large numbers as in the previously studied case of constant width.
doi_str_mv 10.1007/s10958-022-06228-6
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2757970832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A733192093</galeid><sourcerecordid>A733192093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3476-8b3827f1b44ef143f2574ce9e58c614e57a7ab0594d673ba947d5effeaccf3843</originalsourceid><addsrcrecordid>eNp9kV1rFDEUhgdRsFb_gFeBXnmRbT4nmcttaWuhoLTVXsZM5mSadmayJrPg_vtmXaEsLBLIx-F5TuC8VfWZkgUlRJ1mShqpMWEMk5oxjes31RGVimOtGvm23IlimHMl3lcfcn4iRao1P6p-XUyQ-g2KHt3b9Yzu5hSmPqOlc3Fc2WlTXsiihwCFQ99TdJAzslOHbssWR_Rgh2cUpsKcbaulz0-bgm0HKFI3P36s3nk7ZPj07zyuflxe3J9_xTffrq7PlzfYcaFqrFuumfK0FQI8FdwzqYSDBqR2NRUglVW2JbIRXa14axuhOgneg3XOcy34cXWy67tK8fca8mye4jpN5UvDlFSNIpqzV6q3A5gw-Tgn68aQnVkqzmnDSMMLhQ9Q_XYEdogT-FDKe_ziAF9WB2NwB4Uve0JhZvgz93ads7m-u91n2Y51KeacwJtVCqNNG0OJ2YZvduGbEr75G76pi8R3Ul5t84T0Oo3_WC96DK3r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2757970832</pqid></control><display><type>article</type><title>Energy of Taut Strings Accompanying a Wiener Process and Random Walk in a Band of Variable Width</title><source>Springer Nature - Complete Springer Journals</source><creator>Blinova, D. I. ; Lifshits, M. A.</creator><creatorcontrib>Blinova, D. I. ; Lifshits, M. A.</creatorcontrib><description>The kinetic energy of taut strings accompanying the trajectory of a Wiener process or a random walk in a band of growing width is considered. It is shown that under certain assumptions on the band width, the energy obeys the same strong law of large numbers as in the previously studied case of constant width.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-022-06228-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Force and energy ; Kinetic energy ; Mathematics ; Mathematics and Statistics ; Random walk ; Strings</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2022-12, Vol.268 (5), p.573-588</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2022 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3476-8b3827f1b44ef143f2574ce9e58c614e57a7ab0594d673ba947d5effeaccf3843</citedby><cites>FETCH-LOGICAL-c3476-8b3827f1b44ef143f2574ce9e58c614e57a7ab0594d673ba947d5effeaccf3843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-022-06228-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-022-06228-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Blinova, D. I.</creatorcontrib><creatorcontrib>Lifshits, M. A.</creatorcontrib><title>Energy of Taut Strings Accompanying a Wiener Process and Random Walk in a Band of Variable Width</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>The kinetic energy of taut strings accompanying the trajectory of a Wiener process or a random walk in a band of growing width is considered. It is shown that under certain assumptions on the band width, the energy obeys the same strong law of large numbers as in the previously studied case of constant width.</description><subject>Force and energy</subject><subject>Kinetic energy</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Random walk</subject><subject>Strings</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kV1rFDEUhgdRsFb_gFeBXnmRbT4nmcttaWuhoLTVXsZM5mSadmayJrPg_vtmXaEsLBLIx-F5TuC8VfWZkgUlRJ1mShqpMWEMk5oxjes31RGVimOtGvm23IlimHMl3lcfcn4iRao1P6p-XUyQ-g2KHt3b9Yzu5hSmPqOlc3Fc2WlTXsiihwCFQ99TdJAzslOHbssWR_Rgh2cUpsKcbaulz0-bgm0HKFI3P36s3nk7ZPj07zyuflxe3J9_xTffrq7PlzfYcaFqrFuumfK0FQI8FdwzqYSDBqR2NRUglVW2JbIRXa14axuhOgneg3XOcy34cXWy67tK8fca8mye4jpN5UvDlFSNIpqzV6q3A5gw-Tgn68aQnVkqzmnDSMMLhQ9Q_XYEdogT-FDKe_ziAF9WB2NwB4Uve0JhZvgz93ads7m-u91n2Y51KeacwJtVCqNNG0OJ2YZvduGbEr75G76pi8R3Ul5t84T0Oo3_WC96DK3r</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Blinova, D. I.</creator><creator>Lifshits, M. A.</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20221201</creationdate><title>Energy of Taut Strings Accompanying a Wiener Process and Random Walk in a Band of Variable Width</title><author>Blinova, D. I. ; Lifshits, M. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3476-8b3827f1b44ef143f2574ce9e58c614e57a7ab0594d673ba947d5effeaccf3843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Force and energy</topic><topic>Kinetic energy</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Random walk</topic><topic>Strings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blinova, D. I.</creatorcontrib><creatorcontrib>Lifshits, M. A.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blinova, D. I.</au><au>Lifshits, M. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy of Taut Strings Accompanying a Wiener Process and Random Walk in a Band of Variable Width</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>268</volume><issue>5</issue><spage>573</spage><epage>588</epage><pages>573-588</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>The kinetic energy of taut strings accompanying the trajectory of a Wiener process or a random walk in a band of growing width is considered. It is shown that under certain assumptions on the band width, the energy obeys the same strong law of large numbers as in the previously studied case of constant width.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10958-022-06228-6</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1072-3374
ispartof Journal of mathematical sciences (New York, N.Y.), 2022-12, Vol.268 (5), p.573-588
issn 1072-3374
1573-8795
language eng
recordid cdi_proquest_journals_2757970832
source Springer Nature - Complete Springer Journals
subjects Force and energy
Kinetic energy
Mathematics
Mathematics and Statistics
Random walk
Strings
title Energy of Taut Strings Accompanying a Wiener Process and Random Walk in a Band of Variable Width
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A16%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20of%20Taut%20Strings%20Accompanying%20a%20Wiener%20Process%20and%20Random%20Walk%20in%20a%20Band%20of%20Variable%20Width&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Blinova,%20D.%20I.&rft.date=2022-12-01&rft.volume=268&rft.issue=5&rft.spage=573&rft.epage=588&rft.pages=573-588&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-022-06228-6&rft_dat=%3Cgale_proqu%3EA733192093%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2757970832&rft_id=info:pmid/&rft_galeid=A733192093&rfr_iscdi=true