Energy of Taut Strings Accompanying a Wiener Process and Random Walk in a Band of Variable Width
The kinetic energy of taut strings accompanying the trajectory of a Wiener process or a random walk in a band of growing width is considered. It is shown that under certain assumptions on the band width, the energy obeys the same strong law of large numbers as in the previously studied case of const...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2022-12, Vol.268 (5), p.573-588 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 588 |
---|---|
container_issue | 5 |
container_start_page | 573 |
container_title | Journal of mathematical sciences (New York, N.Y.) |
container_volume | 268 |
creator | Blinova, D. I. Lifshits, M. A. |
description | The kinetic energy of taut strings accompanying the trajectory of a Wiener process or a random walk in a band of growing width is considered. It is shown that under certain assumptions on the band width, the energy obeys the same strong law of large numbers as in the previously studied case of constant width. |
doi_str_mv | 10.1007/s10958-022-06228-6 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2757970832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A733192093</galeid><sourcerecordid>A733192093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3476-8b3827f1b44ef143f2574ce9e58c614e57a7ab0594d673ba947d5effeaccf3843</originalsourceid><addsrcrecordid>eNp9kV1rFDEUhgdRsFb_gFeBXnmRbT4nmcttaWuhoLTVXsZM5mSadmayJrPg_vtmXaEsLBLIx-F5TuC8VfWZkgUlRJ1mShqpMWEMk5oxjes31RGVimOtGvm23IlimHMl3lcfcn4iRao1P6p-XUyQ-g2KHt3b9Yzu5hSmPqOlc3Fc2WlTXsiihwCFQ99TdJAzslOHbssWR_Rgh2cUpsKcbaulz0-bgm0HKFI3P36s3nk7ZPj07zyuflxe3J9_xTffrq7PlzfYcaFqrFuumfK0FQI8FdwzqYSDBqR2NRUglVW2JbIRXa14axuhOgneg3XOcy34cXWy67tK8fca8mye4jpN5UvDlFSNIpqzV6q3A5gw-Tgn68aQnVkqzmnDSMMLhQ9Q_XYEdogT-FDKe_ziAF9WB2NwB4Uve0JhZvgz93ads7m-u91n2Y51KeacwJtVCqNNG0OJ2YZvduGbEr75G76pi8R3Ul5t84T0Oo3_WC96DK3r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2757970832</pqid></control><display><type>article</type><title>Energy of Taut Strings Accompanying a Wiener Process and Random Walk in a Band of Variable Width</title><source>Springer Nature - Complete Springer Journals</source><creator>Blinova, D. I. ; Lifshits, M. A.</creator><creatorcontrib>Blinova, D. I. ; Lifshits, M. A.</creatorcontrib><description>The kinetic energy of taut strings accompanying the trajectory of a Wiener process or a random walk in a band of growing width is considered. It is shown that under certain assumptions on the band width, the energy obeys the same strong law of large numbers as in the previously studied case of constant width.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-022-06228-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Force and energy ; Kinetic energy ; Mathematics ; Mathematics and Statistics ; Random walk ; Strings</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2022-12, Vol.268 (5), p.573-588</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2022 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3476-8b3827f1b44ef143f2574ce9e58c614e57a7ab0594d673ba947d5effeaccf3843</citedby><cites>FETCH-LOGICAL-c3476-8b3827f1b44ef143f2574ce9e58c614e57a7ab0594d673ba947d5effeaccf3843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-022-06228-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-022-06228-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Blinova, D. I.</creatorcontrib><creatorcontrib>Lifshits, M. A.</creatorcontrib><title>Energy of Taut Strings Accompanying a Wiener Process and Random Walk in a Band of Variable Width</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>The kinetic energy of taut strings accompanying the trajectory of a Wiener process or a random walk in a band of growing width is considered. It is shown that under certain assumptions on the band width, the energy obeys the same strong law of large numbers as in the previously studied case of constant width.</description><subject>Force and energy</subject><subject>Kinetic energy</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Random walk</subject><subject>Strings</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kV1rFDEUhgdRsFb_gFeBXnmRbT4nmcttaWuhoLTVXsZM5mSadmayJrPg_vtmXaEsLBLIx-F5TuC8VfWZkgUlRJ1mShqpMWEMk5oxjes31RGVimOtGvm23IlimHMl3lcfcn4iRao1P6p-XUyQ-g2KHt3b9Yzu5hSmPqOlc3Fc2WlTXsiihwCFQ99TdJAzslOHbssWR_Rgh2cUpsKcbaulz0-bgm0HKFI3P36s3nk7ZPj07zyuflxe3J9_xTffrq7PlzfYcaFqrFuumfK0FQI8FdwzqYSDBqR2NRUglVW2JbIRXa14axuhOgneg3XOcy34cXWy67tK8fca8mye4jpN5UvDlFSNIpqzV6q3A5gw-Tgn68aQnVkqzmnDSMMLhQ9Q_XYEdogT-FDKe_ziAF9WB2NwB4Uve0JhZvgz93ads7m-u91n2Y51KeacwJtVCqNNG0OJ2YZvduGbEr75G76pi8R3Ul5t84T0Oo3_WC96DK3r</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Blinova, D. I.</creator><creator>Lifshits, M. A.</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20221201</creationdate><title>Energy of Taut Strings Accompanying a Wiener Process and Random Walk in a Band of Variable Width</title><author>Blinova, D. I. ; Lifshits, M. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3476-8b3827f1b44ef143f2574ce9e58c614e57a7ab0594d673ba947d5effeaccf3843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Force and energy</topic><topic>Kinetic energy</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Random walk</topic><topic>Strings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blinova, D. I.</creatorcontrib><creatorcontrib>Lifshits, M. A.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blinova, D. I.</au><au>Lifshits, M. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy of Taut Strings Accompanying a Wiener Process and Random Walk in a Band of Variable Width</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>268</volume><issue>5</issue><spage>573</spage><epage>588</epage><pages>573-588</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>The kinetic energy of taut strings accompanying the trajectory of a Wiener process or a random walk in a band of growing width is considered. It is shown that under certain assumptions on the band width, the energy obeys the same strong law of large numbers as in the previously studied case of constant width.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10958-022-06228-6</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-3374 |
ispartof | Journal of mathematical sciences (New York, N.Y.), 2022-12, Vol.268 (5), p.573-588 |
issn | 1072-3374 1573-8795 |
language | eng |
recordid | cdi_proquest_journals_2757970832 |
source | Springer Nature - Complete Springer Journals |
subjects | Force and energy Kinetic energy Mathematics Mathematics and Statistics Random walk Strings |
title | Energy of Taut Strings Accompanying a Wiener Process and Random Walk in a Band of Variable Width |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A16%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20of%20Taut%20Strings%20Accompanying%20a%20Wiener%20Process%20and%20Random%20Walk%20in%20a%20Band%20of%20Variable%20Width&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Blinova,%20D.%20I.&rft.date=2022-12-01&rft.volume=268&rft.issue=5&rft.spage=573&rft.epage=588&rft.pages=573-588&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-022-06228-6&rft_dat=%3Cgale_proqu%3EA733192093%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2757970832&rft_id=info:pmid/&rft_galeid=A733192093&rfr_iscdi=true |