Standing wave solutions to the Maxwell–Chern–Simons–Schrödinger equations
We prove the existence of standing wave solutions for the Maxwell–Chern–Simons–Schrödinger equation. This model describes the fractional quantum Hall effect and anyonic superconductivity, but standing wave solutions could not be constructed by the standard arguments due to the critical singularity i...
Gespeichert in:
Veröffentlicht in: | Calculus of variations and partial differential equations 2023-03, Vol.62 (2), Article 57 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Calculus of variations and partial differential equations |
container_volume | 62 |
creator | Huh, Hyungjin Han, Jongmin Jin, Sangdon |
description | We prove the existence of standing wave solutions for the Maxwell–Chern–Simons–Schrödinger equation. This model describes the fractional quantum Hall effect and anyonic superconductivity, but standing wave solutions could not be constructed by the standard arguments due to the critical singularity in the gauge fields. To overcome this difficulty, we introduce a perturbation argument by means of the Chern–Simons term. Then our result is established by applying a limiting argument and the mountain pass theorem to a functional that is obtained by representing the gauge fields in terms of a scalar field. |
doi_str_mv | 10.1007/s00526-022-02394-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2757970696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2757970696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-39927e1ef566b6b740826662f6c3b95736c3903667e93f46c5216ad6cc2d7f1e3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAVaRWAfGdjyul6jiTyoCCVhbruvQVGnS2gmFHXfgLlyAm3ASnAaJHQvr2eP3jcePkGMKpxRAngUAwTAFxuLiKkvZDhnQjMfjiItdMgCVxSKi2icHISwAqBixbEDuHxpTzYrqOdmYF5eEumyboq5C0tRJM3fJrXnduLL8fv8Yz52voj4Uy3jfbezcf312rPOJW7dmCx6SvdyUwR396pA8XV48jq_Tyd3Vzfh8kloG0KRcKSYddblAnOJUZjCK0yHL0fKpEpJHVcARpVM8z9AKRtHM0Fo2kzl1fEhO-r4rX69bFxq9qFtfxSc1k0IqCagwuljvsr4Owbtcr3yxNP5NU9BdcrpPTsfk9DY5zSLEeyhEc_e7v9b_UD8A_3RN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2757970696</pqid></control><display><type>article</type><title>Standing wave solutions to the Maxwell–Chern–Simons–Schrödinger equations</title><source>SpringerLink Journals - AutoHoldings</source><creator>Huh, Hyungjin ; Han, Jongmin ; Jin, Sangdon</creator><creatorcontrib>Huh, Hyungjin ; Han, Jongmin ; Jin, Sangdon</creatorcontrib><description>We prove the existence of standing wave solutions for the Maxwell–Chern–Simons–Schrödinger equation. This model describes the fractional quantum Hall effect and anyonic superconductivity, but standing wave solutions could not be constructed by the standard arguments due to the critical singularity in the gauge fields. To overcome this difficulty, we introduce a perturbation argument by means of the Chern–Simons term. Then our result is established by applying a limiting argument and the mountain pass theorem to a functional that is obtained by representing the gauge fields in terms of a scalar field.</description><identifier>ISSN: 0944-2669</identifier><identifier>EISSN: 1432-0835</identifier><identifier>DOI: 10.1007/s00526-022-02394-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Calculus of Variations and Optimal Control; Optimization ; Control ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Perturbation ; Quantum Hall effect ; Scalars ; Schrodinger equation ; Standing waves ; Superconductivity ; Systems Theory ; Theoretical</subject><ispartof>Calculus of variations and partial differential equations, 2023-03, Vol.62 (2), Article 57</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-39927e1ef566b6b740826662f6c3b95736c3903667e93f46c5216ad6cc2d7f1e3</cites><orcidid>0000-0001-9289-0255</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00526-022-02394-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00526-022-02394-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Huh, Hyungjin</creatorcontrib><creatorcontrib>Han, Jongmin</creatorcontrib><creatorcontrib>Jin, Sangdon</creatorcontrib><title>Standing wave solutions to the Maxwell–Chern–Simons–Schrödinger equations</title><title>Calculus of variations and partial differential equations</title><addtitle>Calc. Var</addtitle><description>We prove the existence of standing wave solutions for the Maxwell–Chern–Simons–Schrödinger equation. This model describes the fractional quantum Hall effect and anyonic superconductivity, but standing wave solutions could not be constructed by the standard arguments due to the critical singularity in the gauge fields. To overcome this difficulty, we introduce a perturbation argument by means of the Chern–Simons term. Then our result is established by applying a limiting argument and the mountain pass theorem to a functional that is obtained by representing the gauge fields in terms of a scalar field.</description><subject>Analysis</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Perturbation</subject><subject>Quantum Hall effect</subject><subject>Scalars</subject><subject>Schrodinger equation</subject><subject>Standing waves</subject><subject>Superconductivity</subject><subject>Systems Theory</subject><subject>Theoretical</subject><issn>0944-2669</issn><issn>1432-0835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAVaRWAfGdjyul6jiTyoCCVhbruvQVGnS2gmFHXfgLlyAm3ASnAaJHQvr2eP3jcePkGMKpxRAngUAwTAFxuLiKkvZDhnQjMfjiItdMgCVxSKi2icHISwAqBixbEDuHxpTzYrqOdmYF5eEumyboq5C0tRJM3fJrXnduLL8fv8Yz52voj4Uy3jfbezcf312rPOJW7dmCx6SvdyUwR396pA8XV48jq_Tyd3Vzfh8kloG0KRcKSYddblAnOJUZjCK0yHL0fKpEpJHVcARpVM8z9AKRtHM0Fo2kzl1fEhO-r4rX69bFxq9qFtfxSc1k0IqCagwuljvsr4Owbtcr3yxNP5NU9BdcrpPTsfk9DY5zSLEeyhEc_e7v9b_UD8A_3RN</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Huh, Hyungjin</creator><creator>Han, Jongmin</creator><creator>Jin, Sangdon</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0001-9289-0255</orcidid></search><sort><creationdate>20230301</creationdate><title>Standing wave solutions to the Maxwell–Chern–Simons–Schrödinger equations</title><author>Huh, Hyungjin ; Han, Jongmin ; Jin, Sangdon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-39927e1ef566b6b740826662f6c3b95736c3903667e93f46c5216ad6cc2d7f1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Perturbation</topic><topic>Quantum Hall effect</topic><topic>Scalars</topic><topic>Schrodinger equation</topic><topic>Standing waves</topic><topic>Superconductivity</topic><topic>Systems Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huh, Hyungjin</creatorcontrib><creatorcontrib>Han, Jongmin</creatorcontrib><creatorcontrib>Jin, Sangdon</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Calculus of variations and partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huh, Hyungjin</au><au>Han, Jongmin</au><au>Jin, Sangdon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Standing wave solutions to the Maxwell–Chern–Simons–Schrödinger equations</atitle><jtitle>Calculus of variations and partial differential equations</jtitle><stitle>Calc. Var</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>62</volume><issue>2</issue><artnum>57</artnum><issn>0944-2669</issn><eissn>1432-0835</eissn><abstract>We prove the existence of standing wave solutions for the Maxwell–Chern–Simons–Schrödinger equation. This model describes the fractional quantum Hall effect and anyonic superconductivity, but standing wave solutions could not be constructed by the standard arguments due to the critical singularity in the gauge fields. To overcome this difficulty, we introduce a perturbation argument by means of the Chern–Simons term. Then our result is established by applying a limiting argument and the mountain pass theorem to a functional that is obtained by representing the gauge fields in terms of a scalar field.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00526-022-02394-2</doi><orcidid>https://orcid.org/0000-0001-9289-0255</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0944-2669 |
ispartof | Calculus of variations and partial differential equations, 2023-03, Vol.62 (2), Article 57 |
issn | 0944-2669 1432-0835 |
language | eng |
recordid | cdi_proquest_journals_2757970696 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analysis Calculus of Variations and Optimal Control Optimization Control Mathematical and Computational Physics Mathematics Mathematics and Statistics Perturbation Quantum Hall effect Scalars Schrodinger equation Standing waves Superconductivity Systems Theory Theoretical |
title | Standing wave solutions to the Maxwell–Chern–Simons–Schrödinger equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T22%3A28%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Standing%20wave%20solutions%20to%20the%20Maxwell%E2%80%93Chern%E2%80%93Simons%E2%80%93Schr%C3%B6dinger%20equations&rft.jtitle=Calculus%20of%20variations%20and%20partial%20differential%20equations&rft.au=Huh,%20Hyungjin&rft.date=2023-03-01&rft.volume=62&rft.issue=2&rft.artnum=57&rft.issn=0944-2669&rft.eissn=1432-0835&rft_id=info:doi/10.1007/s00526-022-02394-2&rft_dat=%3Cproquest_cross%3E2757970696%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2757970696&rft_id=info:pmid/&rfr_iscdi=true |