Standing wave solutions to the Maxwell–Chern–Simons–Schrödinger equations

We prove the existence of standing wave solutions for the Maxwell–Chern–Simons–Schrödinger equation. This model describes the fractional quantum Hall effect and anyonic superconductivity, but standing wave solutions could not be constructed by the standard arguments due to the critical singularity i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2023-03, Vol.62 (2), Article 57
Hauptverfasser: Huh, Hyungjin, Han, Jongmin, Jin, Sangdon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Calculus of variations and partial differential equations
container_volume 62
creator Huh, Hyungjin
Han, Jongmin
Jin, Sangdon
description We prove the existence of standing wave solutions for the Maxwell–Chern–Simons–Schrödinger equation. This model describes the fractional quantum Hall effect and anyonic superconductivity, but standing wave solutions could not be constructed by the standard arguments due to the critical singularity in the gauge fields. To overcome this difficulty, we introduce a perturbation argument by means of the Chern–Simons term. Then our result is established by applying a limiting argument and the mountain pass theorem to a functional that is obtained by representing the gauge fields in terms of a scalar field.
doi_str_mv 10.1007/s00526-022-02394-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2757970696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2757970696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-39927e1ef566b6b740826662f6c3b95736c3903667e93f46c5216ad6cc2d7f1e3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAVaRWAfGdjyul6jiTyoCCVhbruvQVGnS2gmFHXfgLlyAm3ASnAaJHQvr2eP3jcePkGMKpxRAngUAwTAFxuLiKkvZDhnQjMfjiItdMgCVxSKi2icHISwAqBixbEDuHxpTzYrqOdmYF5eEumyboq5C0tRJM3fJrXnduLL8fv8Yz52voj4Uy3jfbezcf312rPOJW7dmCx6SvdyUwR396pA8XV48jq_Tyd3Vzfh8kloG0KRcKSYddblAnOJUZjCK0yHL0fKpEpJHVcARpVM8z9AKRtHM0Fo2kzl1fEhO-r4rX69bFxq9qFtfxSc1k0IqCagwuljvsr4Owbtcr3yxNP5NU9BdcrpPTsfk9DY5zSLEeyhEc_e7v9b_UD8A_3RN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2757970696</pqid></control><display><type>article</type><title>Standing wave solutions to the Maxwell–Chern–Simons–Schrödinger equations</title><source>SpringerLink Journals - AutoHoldings</source><creator>Huh, Hyungjin ; Han, Jongmin ; Jin, Sangdon</creator><creatorcontrib>Huh, Hyungjin ; Han, Jongmin ; Jin, Sangdon</creatorcontrib><description>We prove the existence of standing wave solutions for the Maxwell–Chern–Simons–Schrödinger equation. This model describes the fractional quantum Hall effect and anyonic superconductivity, but standing wave solutions could not be constructed by the standard arguments due to the critical singularity in the gauge fields. To overcome this difficulty, we introduce a perturbation argument by means of the Chern–Simons term. Then our result is established by applying a limiting argument and the mountain pass theorem to a functional that is obtained by representing the gauge fields in terms of a scalar field.</description><identifier>ISSN: 0944-2669</identifier><identifier>EISSN: 1432-0835</identifier><identifier>DOI: 10.1007/s00526-022-02394-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Calculus of Variations and Optimal Control; Optimization ; Control ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Perturbation ; Quantum Hall effect ; Scalars ; Schrodinger equation ; Standing waves ; Superconductivity ; Systems Theory ; Theoretical</subject><ispartof>Calculus of variations and partial differential equations, 2023-03, Vol.62 (2), Article 57</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-39927e1ef566b6b740826662f6c3b95736c3903667e93f46c5216ad6cc2d7f1e3</cites><orcidid>0000-0001-9289-0255</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00526-022-02394-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00526-022-02394-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Huh, Hyungjin</creatorcontrib><creatorcontrib>Han, Jongmin</creatorcontrib><creatorcontrib>Jin, Sangdon</creatorcontrib><title>Standing wave solutions to the Maxwell–Chern–Simons–Schrödinger equations</title><title>Calculus of variations and partial differential equations</title><addtitle>Calc. Var</addtitle><description>We prove the existence of standing wave solutions for the Maxwell–Chern–Simons–Schrödinger equation. This model describes the fractional quantum Hall effect and anyonic superconductivity, but standing wave solutions could not be constructed by the standard arguments due to the critical singularity in the gauge fields. To overcome this difficulty, we introduce a perturbation argument by means of the Chern–Simons term. Then our result is established by applying a limiting argument and the mountain pass theorem to a functional that is obtained by representing the gauge fields in terms of a scalar field.</description><subject>Analysis</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Perturbation</subject><subject>Quantum Hall effect</subject><subject>Scalars</subject><subject>Schrodinger equation</subject><subject>Standing waves</subject><subject>Superconductivity</subject><subject>Systems Theory</subject><subject>Theoretical</subject><issn>0944-2669</issn><issn>1432-0835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAVaRWAfGdjyul6jiTyoCCVhbruvQVGnS2gmFHXfgLlyAm3ASnAaJHQvr2eP3jcePkGMKpxRAngUAwTAFxuLiKkvZDhnQjMfjiItdMgCVxSKi2icHISwAqBixbEDuHxpTzYrqOdmYF5eEumyboq5C0tRJM3fJrXnduLL8fv8Yz52voj4Uy3jfbezcf312rPOJW7dmCx6SvdyUwR396pA8XV48jq_Tyd3Vzfh8kloG0KRcKSYddblAnOJUZjCK0yHL0fKpEpJHVcARpVM8z9AKRtHM0Fo2kzl1fEhO-r4rX69bFxq9qFtfxSc1k0IqCagwuljvsr4Owbtcr3yxNP5NU9BdcrpPTsfk9DY5zSLEeyhEc_e7v9b_UD8A_3RN</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Huh, Hyungjin</creator><creator>Han, Jongmin</creator><creator>Jin, Sangdon</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0001-9289-0255</orcidid></search><sort><creationdate>20230301</creationdate><title>Standing wave solutions to the Maxwell–Chern–Simons–Schrödinger equations</title><author>Huh, Hyungjin ; Han, Jongmin ; Jin, Sangdon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-39927e1ef566b6b740826662f6c3b95736c3903667e93f46c5216ad6cc2d7f1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Perturbation</topic><topic>Quantum Hall effect</topic><topic>Scalars</topic><topic>Schrodinger equation</topic><topic>Standing waves</topic><topic>Superconductivity</topic><topic>Systems Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huh, Hyungjin</creatorcontrib><creatorcontrib>Han, Jongmin</creatorcontrib><creatorcontrib>Jin, Sangdon</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Calculus of variations and partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huh, Hyungjin</au><au>Han, Jongmin</au><au>Jin, Sangdon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Standing wave solutions to the Maxwell–Chern–Simons–Schrödinger equations</atitle><jtitle>Calculus of variations and partial differential equations</jtitle><stitle>Calc. Var</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>62</volume><issue>2</issue><artnum>57</artnum><issn>0944-2669</issn><eissn>1432-0835</eissn><abstract>We prove the existence of standing wave solutions for the Maxwell–Chern–Simons–Schrödinger equation. This model describes the fractional quantum Hall effect and anyonic superconductivity, but standing wave solutions could not be constructed by the standard arguments due to the critical singularity in the gauge fields. To overcome this difficulty, we introduce a perturbation argument by means of the Chern–Simons term. Then our result is established by applying a limiting argument and the mountain pass theorem to a functional that is obtained by representing the gauge fields in terms of a scalar field.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00526-022-02394-2</doi><orcidid>https://orcid.org/0000-0001-9289-0255</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0944-2669
ispartof Calculus of variations and partial differential equations, 2023-03, Vol.62 (2), Article 57
issn 0944-2669
1432-0835
language eng
recordid cdi_proquest_journals_2757970696
source SpringerLink Journals - AutoHoldings
subjects Analysis
Calculus of Variations and Optimal Control
Optimization
Control
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Perturbation
Quantum Hall effect
Scalars
Schrodinger equation
Standing waves
Superconductivity
Systems Theory
Theoretical
title Standing wave solutions to the Maxwell–Chern–Simons–Schrödinger equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T22%3A28%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Standing%20wave%20solutions%20to%20the%20Maxwell%E2%80%93Chern%E2%80%93Simons%E2%80%93Schr%C3%B6dinger%20equations&rft.jtitle=Calculus%20of%20variations%20and%20partial%20differential%20equations&rft.au=Huh,%20Hyungjin&rft.date=2023-03-01&rft.volume=62&rft.issue=2&rft.artnum=57&rft.issn=0944-2669&rft.eissn=1432-0835&rft_id=info:doi/10.1007/s00526-022-02394-2&rft_dat=%3Cproquest_cross%3E2757970696%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2757970696&rft_id=info:pmid/&rfr_iscdi=true