Estimates for Dirichlet Eigenvalues of Divergence Form Elliptic Operators in Non-Lipschitz Domains
We obtain estimates for Dirichlet eigenvalues of divergence form elliptic operators −div [ A ( z )∇ f ( z )] in bounded non-Lipschitz domains. We propose a method based on the quasiconformal composition operators on Sobolev spaces with application to weighted Poincaré–Sobolev inequalities.
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2022-12, Vol.268 (3), p.343-354 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We obtain estimates for Dirichlet eigenvalues of divergence form elliptic operators −div [
A
(
z
)∇
f
(
z
)] in bounded non-Lipschitz domains. We propose a method based on the quasiconformal composition operators on Sobolev spaces with application to weighted Poincaré–Sobolev inequalities. |
---|---|
ISSN: | 1072-3374 1573-8795 |
DOI: | 10.1007/s10958-022-06197-w |