High lithium storage performance of Ni0.5Fe0.5O1−xNx thin film with NiO-type crystal structure

The large voltage hysteresis of the NiO anode, which owes much to the intermediate product Li 2 NiO 2 , is one of the main obstacles to its practical application in lithium-ion batteries. In this work, we show that the incorporation of Fe- and N-ions in the NiO lattice can suppress the formation of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers of materials science 2022-12, Vol.16 (4), Article 220624
Hauptverfasser: Ma, Zhiyuan, Wang, Qingbing, Wang, Yuhua, Li, Zhaolong, Zhang, Hong, Li, Zhicheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Frontiers of materials science
container_volume 16
creator Ma, Zhiyuan
Wang, Qingbing
Wang, Yuhua
Li, Zhaolong
Zhang, Hong
Li, Zhicheng
description The large voltage hysteresis of the NiO anode, which owes much to the intermediate product Li 2 NiO 2 , is one of the main obstacles to its practical application in lithium-ion batteries. In this work, we show that the incorporation of Fe- and N-ions in the NiO lattice can suppress the formation of intermediate product Li 2 NiO 2 and thus greatly reduces the voltage hysteresis of the NiO anode from ∼1.2 to ∼0.9 V. In comparison with the pure NiO electrode, the Ni 0.5 Fe 0.5 O 1− x N x anode exhibits significantly enhanced reversible specific capacity (959 mAh·g −1 at 0.3 A·g −1 ), cycling stability (capacity retention of 96.1% at 100th cycle relative to the second cycle) and rate capability (442 at 10 A·g −1 ). These results provide a practical method to enhance the lithium storage performance of the NiO anode and more importantly a new solution to the large voltage hysteresis of conversion-type anodes.
doi_str_mv 10.1007/s11706-022-0624-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2757412789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2757412789</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-a1289cf552bc22a4b16e6d1e1e12d6436a43680caeb44a5f227dd354133bd6b73</originalsourceid><addsrcrecordid>eNp1kN9KwzAUxoMoOOYewLuA153JaZK2lzKcE8Z6o-BdTNN06-g_kxa3N_DaR_RJzKjoledwkkP4fV_gQ-iakjklJLp1lEZEBAQgIAJYIM7QBEjC_YuIz393_nKJZs7tiS9OecLoBL2uyu0OV2W_K4cau761amtwZ2zR2lo12uC2wJuSzPnS-COlXx-fh80Be77BRVnV-N1rPZEG_bEzWNuj61Xlneyg-8GaK3RRqMqZ2c89Rc_L-6fFKlinD4-Lu3WggYk-UBTiRBecQ6YBFMuoMCKnxjfkgoVC-YmJViZjTPECIMrzkDMahlkusiicopvRt7Pt22BcL_ftYBv_pYSIR4xCFCeeoiOlbeucNYXsbFkre5SUyFOWcsxS-izlKUspvAZGjfNsszX2z_l_0TfwbXZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2757412789</pqid></control><display><type>article</type><title>High lithium storage performance of Ni0.5Fe0.5O1−xNx thin film with NiO-type crystal structure</title><source>SpringerNature Journals</source><creator>Ma, Zhiyuan ; Wang, Qingbing ; Wang, Yuhua ; Li, Zhaolong ; Zhang, Hong ; Li, Zhicheng</creator><creatorcontrib>Ma, Zhiyuan ; Wang, Qingbing ; Wang, Yuhua ; Li, Zhaolong ; Zhang, Hong ; Li, Zhicheng</creatorcontrib><description>The large voltage hysteresis of the NiO anode, which owes much to the intermediate product Li 2 NiO 2 , is one of the main obstacles to its practical application in lithium-ion batteries. In this work, we show that the incorporation of Fe- and N-ions in the NiO lattice can suppress the formation of intermediate product Li 2 NiO 2 and thus greatly reduces the voltage hysteresis of the NiO anode from ∼1.2 to ∼0.9 V. In comparison with the pure NiO electrode, the Ni 0.5 Fe 0.5 O 1− x N x anode exhibits significantly enhanced reversible specific capacity (959 mAh·g −1 at 0.3 A·g −1 ), cycling stability (capacity retention of 96.1% at 100th cycle relative to the second cycle) and rate capability (442 at 10 A·g −1 ). These results provide a practical method to enhance the lithium storage performance of the NiO anode and more importantly a new solution to the large voltage hysteresis of conversion-type anodes.</description><identifier>ISSN: 2095-025X</identifier><identifier>EISSN: 2095-0268</identifier><identifier>DOI: 10.1007/s11706-022-0624-6</identifier><language>eng</language><publisher>Beijing: Higher Education Press</publisher><subject>Anodes ; Crystal structure ; Electric potential ; Hysteresis ; Lithium-ion batteries ; Materials Science ; Nickel oxides ; Rechargeable batteries ; Research Article ; Thin films ; Voltage</subject><ispartof>Frontiers of materials science, 2022-12, Vol.16 (4), Article 220624</ispartof><rights>Higher Education Press 2022</rights><rights>Higher Education Press 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c246t-a1289cf552bc22a4b16e6d1e1e12d6436a43680caeb44a5f227dd354133bd6b73</citedby><cites>FETCH-LOGICAL-c246t-a1289cf552bc22a4b16e6d1e1e12d6436a43680caeb44a5f227dd354133bd6b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11706-022-0624-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11706-022-0624-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Ma, Zhiyuan</creatorcontrib><creatorcontrib>Wang, Qingbing</creatorcontrib><creatorcontrib>Wang, Yuhua</creatorcontrib><creatorcontrib>Li, Zhaolong</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Li, Zhicheng</creatorcontrib><title>High lithium storage performance of Ni0.5Fe0.5O1−xNx thin film with NiO-type crystal structure</title><title>Frontiers of materials science</title><addtitle>Front. Mater. Sci</addtitle><description>The large voltage hysteresis of the NiO anode, which owes much to the intermediate product Li 2 NiO 2 , is one of the main obstacles to its practical application in lithium-ion batteries. In this work, we show that the incorporation of Fe- and N-ions in the NiO lattice can suppress the formation of intermediate product Li 2 NiO 2 and thus greatly reduces the voltage hysteresis of the NiO anode from ∼1.2 to ∼0.9 V. In comparison with the pure NiO electrode, the Ni 0.5 Fe 0.5 O 1− x N x anode exhibits significantly enhanced reversible specific capacity (959 mAh·g −1 at 0.3 A·g −1 ), cycling stability (capacity retention of 96.1% at 100th cycle relative to the second cycle) and rate capability (442 at 10 A·g −1 ). These results provide a practical method to enhance the lithium storage performance of the NiO anode and more importantly a new solution to the large voltage hysteresis of conversion-type anodes.</description><subject>Anodes</subject><subject>Crystal structure</subject><subject>Electric potential</subject><subject>Hysteresis</subject><subject>Lithium-ion batteries</subject><subject>Materials Science</subject><subject>Nickel oxides</subject><subject>Rechargeable batteries</subject><subject>Research Article</subject><subject>Thin films</subject><subject>Voltage</subject><issn>2095-025X</issn><issn>2095-0268</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kN9KwzAUxoMoOOYewLuA153JaZK2lzKcE8Z6o-BdTNN06-g_kxa3N_DaR_RJzKjoledwkkP4fV_gQ-iakjklJLp1lEZEBAQgIAJYIM7QBEjC_YuIz393_nKJZs7tiS9OecLoBL2uyu0OV2W_K4cau761amtwZ2zR2lo12uC2wJuSzPnS-COlXx-fh80Be77BRVnV-N1rPZEG_bEzWNuj61Xlneyg-8GaK3RRqMqZ2c89Rc_L-6fFKlinD4-Lu3WggYk-UBTiRBecQ6YBFMuoMCKnxjfkgoVC-YmJViZjTPECIMrzkDMahlkusiicopvRt7Pt22BcL_ftYBv_pYSIR4xCFCeeoiOlbeucNYXsbFkre5SUyFOWcsxS-izlKUspvAZGjfNsszX2z_l_0TfwbXZw</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Ma, Zhiyuan</creator><creator>Wang, Qingbing</creator><creator>Wang, Yuhua</creator><creator>Li, Zhaolong</creator><creator>Zhang, Hong</creator><creator>Li, Zhicheng</creator><general>Higher Education Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221201</creationdate><title>High lithium storage performance of Ni0.5Fe0.5O1−xNx thin film with NiO-type crystal structure</title><author>Ma, Zhiyuan ; Wang, Qingbing ; Wang, Yuhua ; Li, Zhaolong ; Zhang, Hong ; Li, Zhicheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-a1289cf552bc22a4b16e6d1e1e12d6436a43680caeb44a5f227dd354133bd6b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anodes</topic><topic>Crystal structure</topic><topic>Electric potential</topic><topic>Hysteresis</topic><topic>Lithium-ion batteries</topic><topic>Materials Science</topic><topic>Nickel oxides</topic><topic>Rechargeable batteries</topic><topic>Research Article</topic><topic>Thin films</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Zhiyuan</creatorcontrib><creatorcontrib>Wang, Qingbing</creatorcontrib><creatorcontrib>Wang, Yuhua</creatorcontrib><creatorcontrib>Li, Zhaolong</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Li, Zhicheng</creatorcontrib><collection>CrossRef</collection><jtitle>Frontiers of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Zhiyuan</au><au>Wang, Qingbing</au><au>Wang, Yuhua</au><au>Li, Zhaolong</au><au>Zhang, Hong</au><au>Li, Zhicheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High lithium storage performance of Ni0.5Fe0.5O1−xNx thin film with NiO-type crystal structure</atitle><jtitle>Frontiers of materials science</jtitle><stitle>Front. Mater. Sci</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>16</volume><issue>4</issue><artnum>220624</artnum><issn>2095-025X</issn><eissn>2095-0268</eissn><abstract>The large voltage hysteresis of the NiO anode, which owes much to the intermediate product Li 2 NiO 2 , is one of the main obstacles to its practical application in lithium-ion batteries. In this work, we show that the incorporation of Fe- and N-ions in the NiO lattice can suppress the formation of intermediate product Li 2 NiO 2 and thus greatly reduces the voltage hysteresis of the NiO anode from ∼1.2 to ∼0.9 V. In comparison with the pure NiO electrode, the Ni 0.5 Fe 0.5 O 1− x N x anode exhibits significantly enhanced reversible specific capacity (959 mAh·g −1 at 0.3 A·g −1 ), cycling stability (capacity retention of 96.1% at 100th cycle relative to the second cycle) and rate capability (442 at 10 A·g −1 ). These results provide a practical method to enhance the lithium storage performance of the NiO anode and more importantly a new solution to the large voltage hysteresis of conversion-type anodes.</abstract><cop>Beijing</cop><pub>Higher Education Press</pub><doi>10.1007/s11706-022-0624-6</doi></addata></record>
fulltext fulltext
identifier ISSN: 2095-025X
ispartof Frontiers of materials science, 2022-12, Vol.16 (4), Article 220624
issn 2095-025X
2095-0268
language eng
recordid cdi_proquest_journals_2757412789
source SpringerNature Journals
subjects Anodes
Crystal structure
Electric potential
Hysteresis
Lithium-ion batteries
Materials Science
Nickel oxides
Rechargeable batteries
Research Article
Thin films
Voltage
title High lithium storage performance of Ni0.5Fe0.5O1−xNx thin film with NiO-type crystal structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T19%3A37%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20lithium%20storage%20performance%20of%20Ni0.5Fe0.5O1%E2%88%92xNx%20thin%20film%20with%20NiO-type%20crystal%20structure&rft.jtitle=Frontiers%20of%20materials%20science&rft.au=Ma,%20Zhiyuan&rft.date=2022-12-01&rft.volume=16&rft.issue=4&rft.artnum=220624&rft.issn=2095-025X&rft.eissn=2095-0268&rft_id=info:doi/10.1007/s11706-022-0624-6&rft_dat=%3Cproquest_cross%3E2757412789%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2757412789&rft_id=info:pmid/&rfr_iscdi=true