High lithium storage performance of Ni0.5Fe0.5O1−xNx thin film with NiO-type crystal structure
The large voltage hysteresis of the NiO anode, which owes much to the intermediate product Li 2 NiO 2 , is one of the main obstacles to its practical application in lithium-ion batteries. In this work, we show that the incorporation of Fe- and N-ions in the NiO lattice can suppress the formation of...
Gespeichert in:
Veröffentlicht in: | Frontiers of materials science 2022-12, Vol.16 (4), Article 220624 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Frontiers of materials science |
container_volume | 16 |
creator | Ma, Zhiyuan Wang, Qingbing Wang, Yuhua Li, Zhaolong Zhang, Hong Li, Zhicheng |
description | The large voltage hysteresis of the NiO anode, which owes much to the intermediate product Li
2
NiO
2
, is one of the main obstacles to its practical application in lithium-ion batteries. In this work, we show that the incorporation of Fe- and N-ions in the NiO lattice can suppress the formation of intermediate product Li
2
NiO
2
and thus greatly reduces the voltage hysteresis of the NiO anode from ∼1.2 to ∼0.9 V. In comparison with the pure NiO electrode, the Ni
0.5
Fe
0.5
O
1−
x
N
x
anode exhibits significantly enhanced reversible specific capacity (959 mAh·g
−1
at 0.3 A·g
−1
), cycling stability (capacity retention of 96.1% at 100th cycle relative to the second cycle) and rate capability (442 at 10 A·g
−1
). These results provide a practical method to enhance the lithium storage performance of the NiO anode and more importantly a new solution to the large voltage hysteresis of conversion-type anodes. |
doi_str_mv | 10.1007/s11706-022-0624-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2757412789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2757412789</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-a1289cf552bc22a4b16e6d1e1e12d6436a43680caeb44a5f227dd354133bd6b73</originalsourceid><addsrcrecordid>eNp1kN9KwzAUxoMoOOYewLuA153JaZK2lzKcE8Z6o-BdTNN06-g_kxa3N_DaR_RJzKjoledwkkP4fV_gQ-iakjklJLp1lEZEBAQgIAJYIM7QBEjC_YuIz393_nKJZs7tiS9OecLoBL2uyu0OV2W_K4cau761amtwZ2zR2lo12uC2wJuSzPnS-COlXx-fh80Be77BRVnV-N1rPZEG_bEzWNuj61Xlneyg-8GaK3RRqMqZ2c89Rc_L-6fFKlinD4-Lu3WggYk-UBTiRBecQ6YBFMuoMCKnxjfkgoVC-YmJViZjTPECIMrzkDMahlkusiicopvRt7Pt22BcL_ftYBv_pYSIR4xCFCeeoiOlbeucNYXsbFkre5SUyFOWcsxS-izlKUspvAZGjfNsszX2z_l_0TfwbXZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2757412789</pqid></control><display><type>article</type><title>High lithium storage performance of Ni0.5Fe0.5O1−xNx thin film with NiO-type crystal structure</title><source>SpringerNature Journals</source><creator>Ma, Zhiyuan ; Wang, Qingbing ; Wang, Yuhua ; Li, Zhaolong ; Zhang, Hong ; Li, Zhicheng</creator><creatorcontrib>Ma, Zhiyuan ; Wang, Qingbing ; Wang, Yuhua ; Li, Zhaolong ; Zhang, Hong ; Li, Zhicheng</creatorcontrib><description>The large voltage hysteresis of the NiO anode, which owes much to the intermediate product Li
2
NiO
2
, is one of the main obstacles to its practical application in lithium-ion batteries. In this work, we show that the incorporation of Fe- and N-ions in the NiO lattice can suppress the formation of intermediate product Li
2
NiO
2
and thus greatly reduces the voltage hysteresis of the NiO anode from ∼1.2 to ∼0.9 V. In comparison with the pure NiO electrode, the Ni
0.5
Fe
0.5
O
1−
x
N
x
anode exhibits significantly enhanced reversible specific capacity (959 mAh·g
−1
at 0.3 A·g
−1
), cycling stability (capacity retention of 96.1% at 100th cycle relative to the second cycle) and rate capability (442 at 10 A·g
−1
). These results provide a practical method to enhance the lithium storage performance of the NiO anode and more importantly a new solution to the large voltage hysteresis of conversion-type anodes.</description><identifier>ISSN: 2095-025X</identifier><identifier>EISSN: 2095-0268</identifier><identifier>DOI: 10.1007/s11706-022-0624-6</identifier><language>eng</language><publisher>Beijing: Higher Education Press</publisher><subject>Anodes ; Crystal structure ; Electric potential ; Hysteresis ; Lithium-ion batteries ; Materials Science ; Nickel oxides ; Rechargeable batteries ; Research Article ; Thin films ; Voltage</subject><ispartof>Frontiers of materials science, 2022-12, Vol.16 (4), Article 220624</ispartof><rights>Higher Education Press 2022</rights><rights>Higher Education Press 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c246t-a1289cf552bc22a4b16e6d1e1e12d6436a43680caeb44a5f227dd354133bd6b73</citedby><cites>FETCH-LOGICAL-c246t-a1289cf552bc22a4b16e6d1e1e12d6436a43680caeb44a5f227dd354133bd6b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11706-022-0624-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11706-022-0624-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Ma, Zhiyuan</creatorcontrib><creatorcontrib>Wang, Qingbing</creatorcontrib><creatorcontrib>Wang, Yuhua</creatorcontrib><creatorcontrib>Li, Zhaolong</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Li, Zhicheng</creatorcontrib><title>High lithium storage performance of Ni0.5Fe0.5O1−xNx thin film with NiO-type crystal structure</title><title>Frontiers of materials science</title><addtitle>Front. Mater. Sci</addtitle><description>The large voltage hysteresis of the NiO anode, which owes much to the intermediate product Li
2
NiO
2
, is one of the main obstacles to its practical application in lithium-ion batteries. In this work, we show that the incorporation of Fe- and N-ions in the NiO lattice can suppress the formation of intermediate product Li
2
NiO
2
and thus greatly reduces the voltage hysteresis of the NiO anode from ∼1.2 to ∼0.9 V. In comparison with the pure NiO electrode, the Ni
0.5
Fe
0.5
O
1−
x
N
x
anode exhibits significantly enhanced reversible specific capacity (959 mAh·g
−1
at 0.3 A·g
−1
), cycling stability (capacity retention of 96.1% at 100th cycle relative to the second cycle) and rate capability (442 at 10 A·g
−1
). These results provide a practical method to enhance the lithium storage performance of the NiO anode and more importantly a new solution to the large voltage hysteresis of conversion-type anodes.</description><subject>Anodes</subject><subject>Crystal structure</subject><subject>Electric potential</subject><subject>Hysteresis</subject><subject>Lithium-ion batteries</subject><subject>Materials Science</subject><subject>Nickel oxides</subject><subject>Rechargeable batteries</subject><subject>Research Article</subject><subject>Thin films</subject><subject>Voltage</subject><issn>2095-025X</issn><issn>2095-0268</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kN9KwzAUxoMoOOYewLuA153JaZK2lzKcE8Z6o-BdTNN06-g_kxa3N_DaR_RJzKjoledwkkP4fV_gQ-iakjklJLp1lEZEBAQgIAJYIM7QBEjC_YuIz393_nKJZs7tiS9OecLoBL2uyu0OV2W_K4cau761amtwZ2zR2lo12uC2wJuSzPnS-COlXx-fh80Be77BRVnV-N1rPZEG_bEzWNuj61Xlneyg-8GaK3RRqMqZ2c89Rc_L-6fFKlinD4-Lu3WggYk-UBTiRBecQ6YBFMuoMCKnxjfkgoVC-YmJViZjTPECIMrzkDMahlkusiicopvRt7Pt22BcL_ftYBv_pYSIR4xCFCeeoiOlbeucNYXsbFkre5SUyFOWcsxS-izlKUspvAZGjfNsszX2z_l_0TfwbXZw</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Ma, Zhiyuan</creator><creator>Wang, Qingbing</creator><creator>Wang, Yuhua</creator><creator>Li, Zhaolong</creator><creator>Zhang, Hong</creator><creator>Li, Zhicheng</creator><general>Higher Education Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221201</creationdate><title>High lithium storage performance of Ni0.5Fe0.5O1−xNx thin film with NiO-type crystal structure</title><author>Ma, Zhiyuan ; Wang, Qingbing ; Wang, Yuhua ; Li, Zhaolong ; Zhang, Hong ; Li, Zhicheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-a1289cf552bc22a4b16e6d1e1e12d6436a43680caeb44a5f227dd354133bd6b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anodes</topic><topic>Crystal structure</topic><topic>Electric potential</topic><topic>Hysteresis</topic><topic>Lithium-ion batteries</topic><topic>Materials Science</topic><topic>Nickel oxides</topic><topic>Rechargeable batteries</topic><topic>Research Article</topic><topic>Thin films</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Zhiyuan</creatorcontrib><creatorcontrib>Wang, Qingbing</creatorcontrib><creatorcontrib>Wang, Yuhua</creatorcontrib><creatorcontrib>Li, Zhaolong</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Li, Zhicheng</creatorcontrib><collection>CrossRef</collection><jtitle>Frontiers of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Zhiyuan</au><au>Wang, Qingbing</au><au>Wang, Yuhua</au><au>Li, Zhaolong</au><au>Zhang, Hong</au><au>Li, Zhicheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High lithium storage performance of Ni0.5Fe0.5O1−xNx thin film with NiO-type crystal structure</atitle><jtitle>Frontiers of materials science</jtitle><stitle>Front. Mater. Sci</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>16</volume><issue>4</issue><artnum>220624</artnum><issn>2095-025X</issn><eissn>2095-0268</eissn><abstract>The large voltage hysteresis of the NiO anode, which owes much to the intermediate product Li
2
NiO
2
, is one of the main obstacles to its practical application in lithium-ion batteries. In this work, we show that the incorporation of Fe- and N-ions in the NiO lattice can suppress the formation of intermediate product Li
2
NiO
2
and thus greatly reduces the voltage hysteresis of the NiO anode from ∼1.2 to ∼0.9 V. In comparison with the pure NiO electrode, the Ni
0.5
Fe
0.5
O
1−
x
N
x
anode exhibits significantly enhanced reversible specific capacity (959 mAh·g
−1
at 0.3 A·g
−1
), cycling stability (capacity retention of 96.1% at 100th cycle relative to the second cycle) and rate capability (442 at 10 A·g
−1
). These results provide a practical method to enhance the lithium storage performance of the NiO anode and more importantly a new solution to the large voltage hysteresis of conversion-type anodes.</abstract><cop>Beijing</cop><pub>Higher Education Press</pub><doi>10.1007/s11706-022-0624-6</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2095-025X |
ispartof | Frontiers of materials science, 2022-12, Vol.16 (4), Article 220624 |
issn | 2095-025X 2095-0268 |
language | eng |
recordid | cdi_proquest_journals_2757412789 |
source | SpringerNature Journals |
subjects | Anodes Crystal structure Electric potential Hysteresis Lithium-ion batteries Materials Science Nickel oxides Rechargeable batteries Research Article Thin films Voltage |
title | High lithium storage performance of Ni0.5Fe0.5O1−xNx thin film with NiO-type crystal structure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T19%3A37%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20lithium%20storage%20performance%20of%20Ni0.5Fe0.5O1%E2%88%92xNx%20thin%20film%20with%20NiO-type%20crystal%20structure&rft.jtitle=Frontiers%20of%20materials%20science&rft.au=Ma,%20Zhiyuan&rft.date=2022-12-01&rft.volume=16&rft.issue=4&rft.artnum=220624&rft.issn=2095-025X&rft.eissn=2095-0268&rft_id=info:doi/10.1007/s11706-022-0624-6&rft_dat=%3Cproquest_cross%3E2757412789%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2757412789&rft_id=info:pmid/&rfr_iscdi=true |