Dataset of Pathloss and ToA Radio Maps With Localization Application
In this article, we present a collection of radio map datasets in dense urban setting, which we generated and made publicly available. The datasets include simulated pathloss/received signal strength (RSS) and time of arrival (ToA) radio maps over a large collection of realistic dense urban setting...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-09 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Yapar, Çağkan Levie, Ron Kutyniok, Gitta Caire, Giuseppe |
description | In this article, we present a collection of radio map datasets in dense urban setting, which we generated and made publicly available. The datasets include simulated pathloss/received signal strength (RSS) and time of arrival (ToA) radio maps over a large collection of realistic dense urban setting in real city maps. The two main applications of the presented dataset are 1) learning methods that predict the pathloss from input city maps (namely, deep learning-based simulations), and, 2) wireless localization. The fact that the RSS and ToA maps are computed by the same simulations over the same city maps allows for a fair comparison of the RSS and ToA-based localization methods. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2757230859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2757230859</sourcerecordid><originalsourceid>FETCH-proquest_journals_27572308593</originalsourceid><addsrcrecordid>eNqNissKwjAQAIMgWLT_sOC5UBNj67FYxYOCSMFjWfqgKaEbu-nFr1fED_A0AzMzEUilNlG6lXIhQuY-jmO5S6TWKhB5jh658UAt3NB3lpgBhxoKyuCOtSG4omN4GN_BhSq05oXe0ACZc9ZUX1-JeYuWm_DHpVifjsXhHLmRnlPDvuxpGodPKmWiE6niVO_Vf9cb0dM54g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2757230859</pqid></control><display><type>article</type><title>Dataset of Pathloss and ToA Radio Maps With Localization Application</title><source>Free E- Journals</source><creator>Yapar, Çağkan ; Levie, Ron ; Kutyniok, Gitta ; Caire, Giuseppe</creator><creatorcontrib>Yapar, Çağkan ; Levie, Ron ; Kutyniok, Gitta ; Caire, Giuseppe</creatorcontrib><description>In this article, we present a collection of radio map datasets in dense urban setting, which we generated and made publicly available. The datasets include simulated pathloss/received signal strength (RSS) and time of arrival (ToA) radio maps over a large collection of realistic dense urban setting in real city maps. The two main applications of the presented dataset are 1) learning methods that predict the pathloss from input city maps (namely, deep learning-based simulations), and, 2) wireless localization. The fact that the RSS and ToA maps are computed by the same simulations over the same city maps allows for a fair comparison of the RSS and ToA-based localization methods.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Datasets ; Deep learning ; Localization ; Radio ; Signal strength ; Simulation ; Urban environments</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Yapar, Çağkan</creatorcontrib><creatorcontrib>Levie, Ron</creatorcontrib><creatorcontrib>Kutyniok, Gitta</creatorcontrib><creatorcontrib>Caire, Giuseppe</creatorcontrib><title>Dataset of Pathloss and ToA Radio Maps With Localization Application</title><title>arXiv.org</title><description>In this article, we present a collection of radio map datasets in dense urban setting, which we generated and made publicly available. The datasets include simulated pathloss/received signal strength (RSS) and time of arrival (ToA) radio maps over a large collection of realistic dense urban setting in real city maps. The two main applications of the presented dataset are 1) learning methods that predict the pathloss from input city maps (namely, deep learning-based simulations), and, 2) wireless localization. The fact that the RSS and ToA maps are computed by the same simulations over the same city maps allows for a fair comparison of the RSS and ToA-based localization methods.</description><subject>Datasets</subject><subject>Deep learning</subject><subject>Localization</subject><subject>Radio</subject><subject>Signal strength</subject><subject>Simulation</subject><subject>Urban environments</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNissKwjAQAIMgWLT_sOC5UBNj67FYxYOCSMFjWfqgKaEbu-nFr1fED_A0AzMzEUilNlG6lXIhQuY-jmO5S6TWKhB5jh658UAt3NB3lpgBhxoKyuCOtSG4omN4GN_BhSq05oXe0ACZc9ZUX1-JeYuWm_DHpVifjsXhHLmRnlPDvuxpGodPKmWiE6niVO_Vf9cb0dM54g</recordid><startdate>20240916</startdate><enddate>20240916</enddate><creator>Yapar, Çağkan</creator><creator>Levie, Ron</creator><creator>Kutyniok, Gitta</creator><creator>Caire, Giuseppe</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240916</creationdate><title>Dataset of Pathloss and ToA Radio Maps With Localization Application</title><author>Yapar, Çağkan ; Levie, Ron ; Kutyniok, Gitta ; Caire, Giuseppe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27572308593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Datasets</topic><topic>Deep learning</topic><topic>Localization</topic><topic>Radio</topic><topic>Signal strength</topic><topic>Simulation</topic><topic>Urban environments</topic><toplevel>online_resources</toplevel><creatorcontrib>Yapar, Çağkan</creatorcontrib><creatorcontrib>Levie, Ron</creatorcontrib><creatorcontrib>Kutyniok, Gitta</creatorcontrib><creatorcontrib>Caire, Giuseppe</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yapar, Çağkan</au><au>Levie, Ron</au><au>Kutyniok, Gitta</au><au>Caire, Giuseppe</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Dataset of Pathloss and ToA Radio Maps With Localization Application</atitle><jtitle>arXiv.org</jtitle><date>2024-09-16</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In this article, we present a collection of radio map datasets in dense urban setting, which we generated and made publicly available. The datasets include simulated pathloss/received signal strength (RSS) and time of arrival (ToA) radio maps over a large collection of realistic dense urban setting in real city maps. The two main applications of the presented dataset are 1) learning methods that predict the pathloss from input city maps (namely, deep learning-based simulations), and, 2) wireless localization. The fact that the RSS and ToA maps are computed by the same simulations over the same city maps allows for a fair comparison of the RSS and ToA-based localization methods.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2757230859 |
source | Free E- Journals |
subjects | Datasets Deep learning Localization Radio Signal strength Simulation Urban environments |
title | Dataset of Pathloss and ToA Radio Maps With Localization Application |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T10%3A34%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Dataset%20of%20Pathloss%20and%20ToA%20Radio%20Maps%20With%20Localization%20Application&rft.jtitle=arXiv.org&rft.au=Yapar,%20%C3%87a%C4%9Fkan&rft.date=2024-09-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2757230859%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2757230859&rft_id=info:pmid/&rfr_iscdi=true |