Dataset of Pathloss and ToA Radio Maps With Localization Application

In this article, we present a collection of radio map datasets in dense urban setting, which we generated and made publicly available. The datasets include simulated pathloss/received signal strength (RSS) and time of arrival (ToA) radio maps over a large collection of realistic dense urban setting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-09
Hauptverfasser: Yapar, Çağkan, Levie, Ron, Kutyniok, Gitta, Caire, Giuseppe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Yapar, Çağkan
Levie, Ron
Kutyniok, Gitta
Caire, Giuseppe
description In this article, we present a collection of radio map datasets in dense urban setting, which we generated and made publicly available. The datasets include simulated pathloss/received signal strength (RSS) and time of arrival (ToA) radio maps over a large collection of realistic dense urban setting in real city maps. The two main applications of the presented dataset are 1) learning methods that predict the pathloss from input city maps (namely, deep learning-based simulations), and, 2) wireless localization. The fact that the RSS and ToA maps are computed by the same simulations over the same city maps allows for a fair comparison of the RSS and ToA-based localization methods.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2757230859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2757230859</sourcerecordid><originalsourceid>FETCH-proquest_journals_27572308593</originalsourceid><addsrcrecordid>eNqNissKwjAQAIMgWLT_sOC5UBNj67FYxYOCSMFjWfqgKaEbu-nFr1fED_A0AzMzEUilNlG6lXIhQuY-jmO5S6TWKhB5jh658UAt3NB3lpgBhxoKyuCOtSG4omN4GN_BhSq05oXe0ACZc9ZUX1-JeYuWm_DHpVifjsXhHLmRnlPDvuxpGodPKmWiE6niVO_Vf9cb0dM54g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2757230859</pqid></control><display><type>article</type><title>Dataset of Pathloss and ToA Radio Maps With Localization Application</title><source>Free E- Journals</source><creator>Yapar, Çağkan ; Levie, Ron ; Kutyniok, Gitta ; Caire, Giuseppe</creator><creatorcontrib>Yapar, Çağkan ; Levie, Ron ; Kutyniok, Gitta ; Caire, Giuseppe</creatorcontrib><description>In this article, we present a collection of radio map datasets in dense urban setting, which we generated and made publicly available. The datasets include simulated pathloss/received signal strength (RSS) and time of arrival (ToA) radio maps over a large collection of realistic dense urban setting in real city maps. The two main applications of the presented dataset are 1) learning methods that predict the pathloss from input city maps (namely, deep learning-based simulations), and, 2) wireless localization. The fact that the RSS and ToA maps are computed by the same simulations over the same city maps allows for a fair comparison of the RSS and ToA-based localization methods.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Datasets ; Deep learning ; Localization ; Radio ; Signal strength ; Simulation ; Urban environments</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Yapar, Çağkan</creatorcontrib><creatorcontrib>Levie, Ron</creatorcontrib><creatorcontrib>Kutyniok, Gitta</creatorcontrib><creatorcontrib>Caire, Giuseppe</creatorcontrib><title>Dataset of Pathloss and ToA Radio Maps With Localization Application</title><title>arXiv.org</title><description>In this article, we present a collection of radio map datasets in dense urban setting, which we generated and made publicly available. The datasets include simulated pathloss/received signal strength (RSS) and time of arrival (ToA) radio maps over a large collection of realistic dense urban setting in real city maps. The two main applications of the presented dataset are 1) learning methods that predict the pathloss from input city maps (namely, deep learning-based simulations), and, 2) wireless localization. The fact that the RSS and ToA maps are computed by the same simulations over the same city maps allows for a fair comparison of the RSS and ToA-based localization methods.</description><subject>Datasets</subject><subject>Deep learning</subject><subject>Localization</subject><subject>Radio</subject><subject>Signal strength</subject><subject>Simulation</subject><subject>Urban environments</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNissKwjAQAIMgWLT_sOC5UBNj67FYxYOCSMFjWfqgKaEbu-nFr1fED_A0AzMzEUilNlG6lXIhQuY-jmO5S6TWKhB5jh658UAt3NB3lpgBhxoKyuCOtSG4omN4GN_BhSq05oXe0ACZc9ZUX1-JeYuWm_DHpVifjsXhHLmRnlPDvuxpGodPKmWiE6niVO_Vf9cb0dM54g</recordid><startdate>20240916</startdate><enddate>20240916</enddate><creator>Yapar, Çağkan</creator><creator>Levie, Ron</creator><creator>Kutyniok, Gitta</creator><creator>Caire, Giuseppe</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240916</creationdate><title>Dataset of Pathloss and ToA Radio Maps With Localization Application</title><author>Yapar, Çağkan ; Levie, Ron ; Kutyniok, Gitta ; Caire, Giuseppe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27572308593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Datasets</topic><topic>Deep learning</topic><topic>Localization</topic><topic>Radio</topic><topic>Signal strength</topic><topic>Simulation</topic><topic>Urban environments</topic><toplevel>online_resources</toplevel><creatorcontrib>Yapar, Çağkan</creatorcontrib><creatorcontrib>Levie, Ron</creatorcontrib><creatorcontrib>Kutyniok, Gitta</creatorcontrib><creatorcontrib>Caire, Giuseppe</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yapar, Çağkan</au><au>Levie, Ron</au><au>Kutyniok, Gitta</au><au>Caire, Giuseppe</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Dataset of Pathloss and ToA Radio Maps With Localization Application</atitle><jtitle>arXiv.org</jtitle><date>2024-09-16</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In this article, we present a collection of radio map datasets in dense urban setting, which we generated and made publicly available. The datasets include simulated pathloss/received signal strength (RSS) and time of arrival (ToA) radio maps over a large collection of realistic dense urban setting in real city maps. The two main applications of the presented dataset are 1) learning methods that predict the pathloss from input city maps (namely, deep learning-based simulations), and, 2) wireless localization. The fact that the RSS and ToA maps are computed by the same simulations over the same city maps allows for a fair comparison of the RSS and ToA-based localization methods.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2757230859
source Free E- Journals
subjects Datasets
Deep learning
Localization
Radio
Signal strength
Simulation
Urban environments
title Dataset of Pathloss and ToA Radio Maps With Localization Application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T10%3A34%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Dataset%20of%20Pathloss%20and%20ToA%20Radio%20Maps%20With%20Localization%20Application&rft.jtitle=arXiv.org&rft.au=Yapar,%20%C3%87a%C4%9Fkan&rft.date=2024-09-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2757230859%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2757230859&rft_id=info:pmid/&rfr_iscdi=true