Implementation of Risk-Aggregated Substation Testbed Using Generative Adversarial Networks
Capturing the anomalies of a cyber system in power control networks would promote operational awareness. Correlation of such events, e.g., intrusion attempts, traffic flow, and other signatures, together with control alarm events gives operators an in-depth understanding in order to make an informed...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on smart grid 2023-01, Vol.14 (1), p.677-689 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 689 |
---|---|
container_issue | 1 |
container_start_page | 677 |
container_title | IEEE transactions on smart grid |
container_volume | 14 |
creator | Yang, Zhiyuan Zhang, Shipeng Ten, Chee-Wooi Liu, Ting Pang, Xueyue Sun, Hao |
description | Capturing the anomalies of a cyber system in power control networks would promote operational awareness. Correlation of such events, e.g., intrusion attempts, traffic flow, and other signatures, together with control alarm events gives operators an in-depth understanding in order to make an informed decision. This paper proposes a threat inference framework to promote real-time vulnerability assessment associated with cyber intrusions on power communication networks. Wasserstein Generative Adversarial Networks (WGAN) is proposed to estimate the performance of the adversarial model. Additionally, a machine-learning framework is introduced to model the filtering process of the security devices, i.e., firewalls, isolation, and encryption devices, and the posterior fitting method is incorporated to establish an accurate probabilistic formulation. Finally, a testbed is established to coordinate system evaluation. Verification of the intrusion model is part of the implementation to quantify system risks based on the anomalies using (1) the open-source emulator, and (2) an externally imported system analyzer to characterize resulting impacts. The effectiveness and feasibility of the generative models are verified in a comparison study where the proper parameter settings could be obtained. The proposed framework is justified with extensive studies of substation networks using real-world settings. |
doi_str_mv | 10.1109/TSG.2022.3192522 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2757179590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9834047</ieee_id><sourcerecordid>2757179590</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-470169e9b2ce693c7cf4f3a933498e883f6b50278b9c90bff86dc238ac9bfccd3</originalsourceid><addsrcrecordid>eNo9kMtrAjEQxkNpoWK9F3pZ6HltktnXHEVaK0gLVS-9hGx2Iutj1yarpf99I4pzmWG-bx78GHsUfCgEx5fFfDKUXMohCJSplDesJzDBGHgmbq91Cvds4P2ahwCATGKPfU93-y3tqOl0V7dN1Nroq_abeLRaOVrpjqpofij9RV2Q78rQWvq6WUUTasgF4UjRqDqS89rVeht9UPfbuo1_YHdWbz0NLrnPlm-vi_F7PPucTMejWWwkii5Oci4yJCyloQzB5MYmFjQCJFhQUYDNypTLvCjRIC-tLbLKSCi0wdIaU0GfPZ_37l37cwgfqnV7cE04qWSe5iLHFHlw8bPLuNZ7R1btXb3T7k8Jrk4QVYCoThDVBWIYeTqP1ER0tWMBCU9y-Af1dG5S</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2757179590</pqid></control><display><type>article</type><title>Implementation of Risk-Aggregated Substation Testbed Using Generative Adversarial Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Yang, Zhiyuan ; Zhang, Shipeng ; Ten, Chee-Wooi ; Liu, Ting ; Pang, Xueyue ; Sun, Hao</creator><creatorcontrib>Yang, Zhiyuan ; Zhang, Shipeng ; Ten, Chee-Wooi ; Liu, Ting ; Pang, Xueyue ; Sun, Hao</creatorcontrib><description>Capturing the anomalies of a cyber system in power control networks would promote operational awareness. Correlation of such events, e.g., intrusion attempts, traffic flow, and other signatures, together with control alarm events gives operators an in-depth understanding in order to make an informed decision. This paper proposes a threat inference framework to promote real-time vulnerability assessment associated with cyber intrusions on power communication networks. Wasserstein Generative Adversarial Networks (WGAN) is proposed to estimate the performance of the adversarial model. Additionally, a machine-learning framework is introduced to model the filtering process of the security devices, i.e., firewalls, isolation, and encryption devices, and the posterior fitting method is incorporated to establish an accurate probabilistic formulation. Finally, a testbed is established to coordinate system evaluation. Verification of the intrusion model is part of the implementation to quantify system risks based on the anomalies using (1) the open-source emulator, and (2) an externally imported system analyzer to characterize resulting impacts. The effectiveness and feasibility of the generative models are verified in a comparison study where the proper parameter settings could be obtained. The proposed framework is justified with extensive studies of substation networks using real-world settings.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2022.3192522</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Anomalies ; Co-simulation ; Communication networks ; Control systems ; Coordinates ; electronic intrusion ; Generative adversarial networks ; Intrusion ; Machine learning ; Power control ; power substation ; Process control ; Production ; Security ; Substations ; Switches ; switching attacks ; Test stands ; Topology</subject><ispartof>IEEE transactions on smart grid, 2023-01, Vol.14 (1), p.677-689</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-470169e9b2ce693c7cf4f3a933498e883f6b50278b9c90bff86dc238ac9bfccd3</citedby><cites>FETCH-LOGICAL-c291t-470169e9b2ce693c7cf4f3a933498e883f6b50278b9c90bff86dc238ac9bfccd3</cites><orcidid>0000-0003-0657-6310 ; 0000-0002-7600-0934 ; 0000-0002-9290-8926 ; 0000-0003-3353-2305</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9834047$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9834047$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yang, Zhiyuan</creatorcontrib><creatorcontrib>Zhang, Shipeng</creatorcontrib><creatorcontrib>Ten, Chee-Wooi</creatorcontrib><creatorcontrib>Liu, Ting</creatorcontrib><creatorcontrib>Pang, Xueyue</creatorcontrib><creatorcontrib>Sun, Hao</creatorcontrib><title>Implementation of Risk-Aggregated Substation Testbed Using Generative Adversarial Networks</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>Capturing the anomalies of a cyber system in power control networks would promote operational awareness. Correlation of such events, e.g., intrusion attempts, traffic flow, and other signatures, together with control alarm events gives operators an in-depth understanding in order to make an informed decision. This paper proposes a threat inference framework to promote real-time vulnerability assessment associated with cyber intrusions on power communication networks. Wasserstein Generative Adversarial Networks (WGAN) is proposed to estimate the performance of the adversarial model. Additionally, a machine-learning framework is introduced to model the filtering process of the security devices, i.e., firewalls, isolation, and encryption devices, and the posterior fitting method is incorporated to establish an accurate probabilistic formulation. Finally, a testbed is established to coordinate system evaluation. Verification of the intrusion model is part of the implementation to quantify system risks based on the anomalies using (1) the open-source emulator, and (2) an externally imported system analyzer to characterize resulting impacts. The effectiveness and feasibility of the generative models are verified in a comparison study where the proper parameter settings could be obtained. The proposed framework is justified with extensive studies of substation networks using real-world settings.</description><subject>Anomalies</subject><subject>Co-simulation</subject><subject>Communication networks</subject><subject>Control systems</subject><subject>Coordinates</subject><subject>electronic intrusion</subject><subject>Generative adversarial networks</subject><subject>Intrusion</subject><subject>Machine learning</subject><subject>Power control</subject><subject>power substation</subject><subject>Process control</subject><subject>Production</subject><subject>Security</subject><subject>Substations</subject><subject>Switches</subject><subject>switching attacks</subject><subject>Test stands</subject><subject>Topology</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtrAjEQxkNpoWK9F3pZ6HltktnXHEVaK0gLVS-9hGx2Iutj1yarpf99I4pzmWG-bx78GHsUfCgEx5fFfDKUXMohCJSplDesJzDBGHgmbq91Cvds4P2ahwCATGKPfU93-y3tqOl0V7dN1Nroq_abeLRaOVrpjqpofij9RV2Q78rQWvq6WUUTasgF4UjRqDqS89rVeht9UPfbuo1_YHdWbz0NLrnPlm-vi_F7PPucTMejWWwkii5Oci4yJCyloQzB5MYmFjQCJFhQUYDNypTLvCjRIC-tLbLKSCi0wdIaU0GfPZ_37l37cwgfqnV7cE04qWSe5iLHFHlw8bPLuNZ7R1btXb3T7k8Jrk4QVYCoThDVBWIYeTqP1ER0tWMBCU9y-Af1dG5S</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Yang, Zhiyuan</creator><creator>Zhang, Shipeng</creator><creator>Ten, Chee-Wooi</creator><creator>Liu, Ting</creator><creator>Pang, Xueyue</creator><creator>Sun, Hao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0657-6310</orcidid><orcidid>https://orcid.org/0000-0002-7600-0934</orcidid><orcidid>https://orcid.org/0000-0002-9290-8926</orcidid><orcidid>https://orcid.org/0000-0003-3353-2305</orcidid></search><sort><creationdate>202301</creationdate><title>Implementation of Risk-Aggregated Substation Testbed Using Generative Adversarial Networks</title><author>Yang, Zhiyuan ; Zhang, Shipeng ; Ten, Chee-Wooi ; Liu, Ting ; Pang, Xueyue ; Sun, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-470169e9b2ce693c7cf4f3a933498e883f6b50278b9c90bff86dc238ac9bfccd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anomalies</topic><topic>Co-simulation</topic><topic>Communication networks</topic><topic>Control systems</topic><topic>Coordinates</topic><topic>electronic intrusion</topic><topic>Generative adversarial networks</topic><topic>Intrusion</topic><topic>Machine learning</topic><topic>Power control</topic><topic>power substation</topic><topic>Process control</topic><topic>Production</topic><topic>Security</topic><topic>Substations</topic><topic>Switches</topic><topic>switching attacks</topic><topic>Test stands</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Zhiyuan</creatorcontrib><creatorcontrib>Zhang, Shipeng</creatorcontrib><creatorcontrib>Ten, Chee-Wooi</creatorcontrib><creatorcontrib>Liu, Ting</creatorcontrib><creatorcontrib>Pang, Xueyue</creatorcontrib><creatorcontrib>Sun, Hao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Zhiyuan</au><au>Zhang, Shipeng</au><au>Ten, Chee-Wooi</au><au>Liu, Ting</au><au>Pang, Xueyue</au><au>Sun, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementation of Risk-Aggregated Substation Testbed Using Generative Adversarial Networks</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2023-01</date><risdate>2023</risdate><volume>14</volume><issue>1</issue><spage>677</spage><epage>689</epage><pages>677-689</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>Capturing the anomalies of a cyber system in power control networks would promote operational awareness. Correlation of such events, e.g., intrusion attempts, traffic flow, and other signatures, together with control alarm events gives operators an in-depth understanding in order to make an informed decision. This paper proposes a threat inference framework to promote real-time vulnerability assessment associated with cyber intrusions on power communication networks. Wasserstein Generative Adversarial Networks (WGAN) is proposed to estimate the performance of the adversarial model. Additionally, a machine-learning framework is introduced to model the filtering process of the security devices, i.e., firewalls, isolation, and encryption devices, and the posterior fitting method is incorporated to establish an accurate probabilistic formulation. Finally, a testbed is established to coordinate system evaluation. Verification of the intrusion model is part of the implementation to quantify system risks based on the anomalies using (1) the open-source emulator, and (2) an externally imported system analyzer to characterize resulting impacts. The effectiveness and feasibility of the generative models are verified in a comparison study where the proper parameter settings could be obtained. The proposed framework is justified with extensive studies of substation networks using real-world settings.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSG.2022.3192522</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0657-6310</orcidid><orcidid>https://orcid.org/0000-0002-7600-0934</orcidid><orcidid>https://orcid.org/0000-0002-9290-8926</orcidid><orcidid>https://orcid.org/0000-0003-3353-2305</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1949-3053 |
ispartof | IEEE transactions on smart grid, 2023-01, Vol.14 (1), p.677-689 |
issn | 1949-3053 1949-3061 |
language | eng |
recordid | cdi_proquest_journals_2757179590 |
source | IEEE Electronic Library (IEL) |
subjects | Anomalies Co-simulation Communication networks Control systems Coordinates electronic intrusion Generative adversarial networks Intrusion Machine learning Power control power substation Process control Production Security Substations Switches switching attacks Test stands Topology |
title | Implementation of Risk-Aggregated Substation Testbed Using Generative Adversarial Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T00%3A52%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementation%20of%20Risk-Aggregated%20Substation%20Testbed%20Using%20Generative%20Adversarial%20Networks&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Yang,%20Zhiyuan&rft.date=2023-01&rft.volume=14&rft.issue=1&rft.spage=677&rft.epage=689&rft.pages=677-689&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2022.3192522&rft_dat=%3Cproquest_RIE%3E2757179590%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2757179590&rft_id=info:pmid/&rft_ieee_id=9834047&rfr_iscdi=true |