Quasisynchronization of Delayed Neural Networks With Discontinuous Activation Functions on Time Scales via Event-Triggered Control

Almost all event-triggered control (ETC) strategies were designed for discrete-time or continuous-time systems. In order to unify these existing theoretical results of ETC and develop ETC strategies for nonlinear systems, whose state variables evolve steadily at one time and change intermittently at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2023-01, Vol.53 (1), p.44-54
Hauptverfasser: Wan, Peng, Zeng, Zhigang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 54
container_issue 1
container_start_page 44
container_title IEEE transactions on cybernetics
container_volume 53
creator Wan, Peng
Zeng, Zhigang
description Almost all event-triggered control (ETC) strategies were designed for discrete-time or continuous-time systems. In order to unify these existing theoretical results of ETC and develop ETC strategies for nonlinear systems, whose state variables evolve steadily at one time and change intermittently at another time, this article investigates quasisynchronization of delayed neural networks (NNs) on time scales with discontinuous activation functions via ETC approaches. First, the existence of the Filippov solutions is proved for discontinuous NNs with finite discontinuities. Second, two static event-triggered conditions and two dynamic event-triggered conditions are established to avoid continuous communication between the master-slave systems under algebraic/matrix inequality criteria. Third, under static/dynamic event-triggered conditions, a positive lower bound of event-triggered intervals is demonstrated to be greater than a positive number for each event-based controller, which shows that the Zeno behavior will not occur. Finally, two numerical simulations are carried out to show the effectiveness of the presented theoretical results in this article.
doi_str_mv 10.1109/TCYB.2021.3088725
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2757178283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9471009</ieee_id><sourcerecordid>2548403865</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-ab6b26ae73d3bf00f0e0837a101de4b633000190160ebd0963aea42db9270c063</originalsourceid><addsrcrecordid>eNpdkU9v1DAQxS0EolXpB0BIyBIXLlnGduI_x7JtAakCIRYhTpaTTFqXrF3sZNFy5JPj1S57wJcZ27_35PEj5DmDBWNg3qyW398uOHC2EKC14s0jcsqZ1BXnqnl87KU6Iec530NZuhwZ_ZSciJoZJURzSv58nl32eRu6uxSD_-0mHwONA73E0W2xpx9xTm4sZfoV049Mv_npjl763MUw-TDHOdOLbvKbvfB6Dt2uybRsVn6N9EvnRsx04x292mCYqlXyt7eYivWyWKQ4PiNPBjdmPD_UM_L1-mq1fF_dfHr3YXlxU3WiNlPlWtly6VCJXrQDwAAIWijHgPVYt1KIMiEzwCRg24ORwqGred8arqADKc7I673vQ4o_Z8yTXZcxcBxdwDKG5U2taxBaNgV99R96H-cUyuts-VzFlOZaFIrtqS7FnBMO9iH5tUtby8DuMrK7jOwuI3vIqGheHpzndo39UfEvkQK82AMeEY_XplYMwIi_NU-Wag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2757178283</pqid></control><display><type>article</type><title>Quasisynchronization of Delayed Neural Networks With Discontinuous Activation Functions on Time Scales via Event-Triggered Control</title><source>IEEE Electronic Library (IEL)</source><creator>Wan, Peng ; Zeng, Zhigang</creator><creatorcontrib>Wan, Peng ; Zeng, Zhigang</creatorcontrib><description>Almost all event-triggered control (ETC) strategies were designed for discrete-time or continuous-time systems. In order to unify these existing theoretical results of ETC and develop ETC strategies for nonlinear systems, whose state variables evolve steadily at one time and change intermittently at another time, this article investigates quasisynchronization of delayed neural networks (NNs) on time scales with discontinuous activation functions via ETC approaches. First, the existence of the Filippov solutions is proved for discontinuous NNs with finite discontinuities. Second, two static event-triggered conditions and two dynamic event-triggered conditions are established to avoid continuous communication between the master-slave systems under algebraic/matrix inequality criteria. Third, under static/dynamic event-triggered conditions, a positive lower bound of event-triggered intervals is demonstrated to be greater than a positive number for each event-based controller, which shows that the Zeno behavior will not occur. Finally, two numerical simulations are carried out to show the effectiveness of the presented theoretical results in this article.</description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2021.3088725</identifier><identifier>PMID: 34197335</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial neural networks ; Continuous time systems ; Control systems ; Delay ; Discontinuity ; Discrete time systems ; Event triggered control ; event-triggered control (ETC) ; Insects ; Lower bounds ; Neural networks ; neural networks (NNs) ; Neurons ; Nonlinear systems ; quasisynchronization ; Sociology ; Statistics ; Technological innovation ; Time ; time scales</subject><ispartof>IEEE transactions on cybernetics, 2023-01, Vol.53 (1), p.44-54</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-ab6b26ae73d3bf00f0e0837a101de4b633000190160ebd0963aea42db9270c063</citedby><cites>FETCH-LOGICAL-c349t-ab6b26ae73d3bf00f0e0837a101de4b633000190160ebd0963aea42db9270c063</cites><orcidid>0000-0002-3274-1319 ; 0000-0003-4587-3588</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9471009$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9471009$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34197335$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wan, Peng</creatorcontrib><creatorcontrib>Zeng, Zhigang</creatorcontrib><title>Quasisynchronization of Delayed Neural Networks With Discontinuous Activation Functions on Time Scales via Event-Triggered Control</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description>Almost all event-triggered control (ETC) strategies were designed for discrete-time or continuous-time systems. In order to unify these existing theoretical results of ETC and develop ETC strategies for nonlinear systems, whose state variables evolve steadily at one time and change intermittently at another time, this article investigates quasisynchronization of delayed neural networks (NNs) on time scales with discontinuous activation functions via ETC approaches. First, the existence of the Filippov solutions is proved for discontinuous NNs with finite discontinuities. Second, two static event-triggered conditions and two dynamic event-triggered conditions are established to avoid continuous communication between the master-slave systems under algebraic/matrix inequality criteria. Third, under static/dynamic event-triggered conditions, a positive lower bound of event-triggered intervals is demonstrated to be greater than a positive number for each event-based controller, which shows that the Zeno behavior will not occur. Finally, two numerical simulations are carried out to show the effectiveness of the presented theoretical results in this article.</description><subject>Artificial neural networks</subject><subject>Continuous time systems</subject><subject>Control systems</subject><subject>Delay</subject><subject>Discontinuity</subject><subject>Discrete time systems</subject><subject>Event triggered control</subject><subject>event-triggered control (ETC)</subject><subject>Insects</subject><subject>Lower bounds</subject><subject>Neural networks</subject><subject>neural networks (NNs)</subject><subject>Neurons</subject><subject>Nonlinear systems</subject><subject>quasisynchronization</subject><subject>Sociology</subject><subject>Statistics</subject><subject>Technological innovation</subject><subject>Time</subject><subject>time scales</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU9v1DAQxS0EolXpB0BIyBIXLlnGduI_x7JtAakCIRYhTpaTTFqXrF3sZNFy5JPj1S57wJcZ27_35PEj5DmDBWNg3qyW398uOHC2EKC14s0jcsqZ1BXnqnl87KU6Iec530NZuhwZ_ZSciJoZJURzSv58nl32eRu6uxSD_-0mHwONA73E0W2xpx9xTm4sZfoV049Mv_npjl763MUw-TDHOdOLbvKbvfB6Dt2uybRsVn6N9EvnRsx04x292mCYqlXyt7eYivWyWKQ4PiNPBjdmPD_UM_L1-mq1fF_dfHr3YXlxU3WiNlPlWtly6VCJXrQDwAAIWijHgPVYt1KIMiEzwCRg24ORwqGred8arqADKc7I673vQ4o_Z8yTXZcxcBxdwDKG5U2taxBaNgV99R96H-cUyuts-VzFlOZaFIrtqS7FnBMO9iH5tUtby8DuMrK7jOwuI3vIqGheHpzndo39UfEvkQK82AMeEY_XplYMwIi_NU-Wag</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Wan, Peng</creator><creator>Zeng, Zhigang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3274-1319</orcidid><orcidid>https://orcid.org/0000-0003-4587-3588</orcidid></search><sort><creationdate>202301</creationdate><title>Quasisynchronization of Delayed Neural Networks With Discontinuous Activation Functions on Time Scales via Event-Triggered Control</title><author>Wan, Peng ; Zeng, Zhigang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-ab6b26ae73d3bf00f0e0837a101de4b633000190160ebd0963aea42db9270c063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Continuous time systems</topic><topic>Control systems</topic><topic>Delay</topic><topic>Discontinuity</topic><topic>Discrete time systems</topic><topic>Event triggered control</topic><topic>event-triggered control (ETC)</topic><topic>Insects</topic><topic>Lower bounds</topic><topic>Neural networks</topic><topic>neural networks (NNs)</topic><topic>Neurons</topic><topic>Nonlinear systems</topic><topic>quasisynchronization</topic><topic>Sociology</topic><topic>Statistics</topic><topic>Technological innovation</topic><topic>Time</topic><topic>time scales</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wan, Peng</creatorcontrib><creatorcontrib>Zeng, Zhigang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wan, Peng</au><au>Zeng, Zhigang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quasisynchronization of Delayed Neural Networks With Discontinuous Activation Functions on Time Scales via Event-Triggered Control</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2023-01</date><risdate>2023</risdate><volume>53</volume><issue>1</issue><spage>44</spage><epage>54</epage><pages>44-54</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>Almost all event-triggered control (ETC) strategies were designed for discrete-time or continuous-time systems. In order to unify these existing theoretical results of ETC and develop ETC strategies for nonlinear systems, whose state variables evolve steadily at one time and change intermittently at another time, this article investigates quasisynchronization of delayed neural networks (NNs) on time scales with discontinuous activation functions via ETC approaches. First, the existence of the Filippov solutions is proved for discontinuous NNs with finite discontinuities. Second, two static event-triggered conditions and two dynamic event-triggered conditions are established to avoid continuous communication between the master-slave systems under algebraic/matrix inequality criteria. Third, under static/dynamic event-triggered conditions, a positive lower bound of event-triggered intervals is demonstrated to be greater than a positive number for each event-based controller, which shows that the Zeno behavior will not occur. Finally, two numerical simulations are carried out to show the effectiveness of the presented theoretical results in this article.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>34197335</pmid><doi>10.1109/TCYB.2021.3088725</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3274-1319</orcidid><orcidid>https://orcid.org/0000-0003-4587-3588</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2267
ispartof IEEE transactions on cybernetics, 2023-01, Vol.53 (1), p.44-54
issn 2168-2267
2168-2275
language eng
recordid cdi_proquest_journals_2757178283
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Continuous time systems
Control systems
Delay
Discontinuity
Discrete time systems
Event triggered control
event-triggered control (ETC)
Insects
Lower bounds
Neural networks
neural networks (NNs)
Neurons
Nonlinear systems
quasisynchronization
Sociology
Statistics
Technological innovation
Time
time scales
title Quasisynchronization of Delayed Neural Networks With Discontinuous Activation Functions on Time Scales via Event-Triggered Control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A27%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quasisynchronization%20of%20Delayed%20Neural%20Networks%20With%20Discontinuous%20Activation%20Functions%20on%20Time%20Scales%20via%20Event-Triggered%20Control&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Wan,%20Peng&rft.date=2023-01&rft.volume=53&rft.issue=1&rft.spage=44&rft.epage=54&rft.pages=44-54&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2021.3088725&rft_dat=%3Cproquest_RIE%3E2548403865%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2757178283&rft_id=info:pmid/34197335&rft_ieee_id=9471009&rfr_iscdi=true