Adaptive Control of Distributed Energy Resources for Distribution Grid Voltage Stability

Volt-VAR and Volt-Watt functionality in photovoltaic (PV) smart inverters provide mechanisms to ensure system voltage magnitudes and power factors remain within acceptable limits. However, these control functions can become unstable, introducing oscillations in system voltages when not appropriately...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2023-01, Vol.38 (1), p.129-141
Hauptverfasser: Arnold, Daniel, Saha, Shammya, Ngo, Sy-Toan, Roberts, Ciaran, Scaglione, Anna, Johnson, Nathan G., Peisert, Sean, Pinney, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Volt-VAR and Volt-Watt functionality in photovoltaic (PV) smart inverters provide mechanisms to ensure system voltage magnitudes and power factors remain within acceptable limits. However, these control functions can become unstable, introducing oscillations in system voltages when not appropriately configured or maliciously altered during a cyberattack. In the event that Volt-VAR and Volt-Watt control functions in a portion of PV smart inverters in a distribution grid are unstable, the proposed adaptation scheme utilizes the remaining and stably-behaving PV smart inverters and other Distributed Energy Resources to mitigate the effect of the instability. The adaptation mechanism is entirely decentralized, model-free, communication-free, and requires virtually no external configuration. We provide a derivation of the adaptive control approach and validate the algorithm in experiments on the IEEE 37 and 8500 node test feeders.
ISSN:0885-8950
1558-0679
DOI:10.1109/TPWRS.2022.3157558