Solar‐Driven Co‐Production of Hydrogen and Value‐Add Conductive Polyaniline Polymer
To reduce the reliance on fossil fuel, H2, as a clean fuel, has attracted substantial research and development activities in recent years. The traditional water splitting approach requires an applied bias of more than 1.5 V and the use of ion‐selective membranes to prevent the formation of a potenti...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2022-12, Vol.32 (52), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 52 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 32 |
creator | Chen, Hongjun Zheng, Jianghui Ballestas‐Barrientos, Alfonso Bing, Jueming Liao, Chwenhaw Yuen, Alexander K. L. Fois, Chiara A. M. Valtchev, Peter Proschogo, Nicholas Bremner, Stephen P. Atwater, Harry A. Boyer, Cyrille Maschmeyer, Thomas Ho‐Baillie, Anita W. Y. |
description | To reduce the reliance on fossil fuel, H2, as a clean fuel, has attracted substantial research and development activities in recent years. The traditional water splitting approach requires an applied bias of more than 1.5 V and the use of ion‐selective membranes to prevent the formation of a potentially explosive H2–O2 gas mixture, resulting in increased cost and system design complexity. Here, a solar‐driven H2 production process requiring a much lower applied bias of 1.05 V is reported whereby aniline (ANI) is oxidized to polyaniline (PANI) at the anode with a yield of 96% and H2 evolution reaction occurs at the cathode with a faradaic efficiency of 98.6 ± 3.9%. The process has multiple advantages including the elimination of ion‐exchange membrane as PANI is a solid product that also is of substantially higher value than O2. For demonstration, a single junction perovskite solar cell and low‐cost earth abundant CoP catalyst are successfully applied for this process. This process contributes to the advancement of solar‐driven low‐cost H2 generation coupled with co‐production of a high‐value product expediting the transition to a hydrogen economy.
A solar‐driven process with co‐production of H2 and a value‐add conductive polyaniline (PANI) polymer is reported. Compared to conventional water splitting, this process is driven at a lower applied bias of 1.05 V without the use of ion‐exchange membrane producing PANI with a higher value than O2. |
doi_str_mv | 10.1002/adfm.202204807 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2757132369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2757132369</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3577-4f083ac1637fa3a3222234c227207c00598c0375b91a85132685f64719cebe963</originalsourceid><addsrcrecordid>eNqFkE9LwzAYh4MoOKdXzwXPnW-SNmmPY3NOmDjwD3oKWZpIR5fMdJ305kfwM_pJzKzMo-8lP8jzvC_8EDrHMMAA5FIWZjUgQAgkGfAD1MMMs5gCyQ73GT8fo5O6XgJgzmnSQy_3rpL-6-Nz7MutttHIhTz3rmjUpnQ2ciaatoV3r-FP2iJ6klWjAzIsisDaH2yro7mrWmnLqrRdXml_io6MrGp99vv20ePk6mE0jWd31zej4SxWNOU8TgxkVCrMKDeSSkrC0EQRwglwBZDmmQLK00WOZZZiSliWGpZwnCu90DmjfXTR7V1799boeiOWrvE2nBSEpzwYlOWBGnSU8q6uvTZi7cuV9K3AIHb1iV19Yl9fEPJOeC8r3f5Di-F4cvvnfgNy2nVI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2757132369</pqid></control><display><type>article</type><title>Solar‐Driven Co‐Production of Hydrogen and Value‐Add Conductive Polyaniline Polymer</title><source>Access via Wiley Online Library</source><creator>Chen, Hongjun ; Zheng, Jianghui ; Ballestas‐Barrientos, Alfonso ; Bing, Jueming ; Liao, Chwenhaw ; Yuen, Alexander K. L. ; Fois, Chiara A. M. ; Valtchev, Peter ; Proschogo, Nicholas ; Bremner, Stephen P. ; Atwater, Harry A. ; Boyer, Cyrille ; Maschmeyer, Thomas ; Ho‐Baillie, Anita W. Y.</creator><creatorcontrib>Chen, Hongjun ; Zheng, Jianghui ; Ballestas‐Barrientos, Alfonso ; Bing, Jueming ; Liao, Chwenhaw ; Yuen, Alexander K. L. ; Fois, Chiara A. M. ; Valtchev, Peter ; Proschogo, Nicholas ; Bremner, Stephen P. ; Atwater, Harry A. ; Boyer, Cyrille ; Maschmeyer, Thomas ; Ho‐Baillie, Anita W. Y.</creatorcontrib><description>To reduce the reliance on fossil fuel, H2, as a clean fuel, has attracted substantial research and development activities in recent years. The traditional water splitting approach requires an applied bias of more than 1.5 V and the use of ion‐selective membranes to prevent the formation of a potentially explosive H2–O2 gas mixture, resulting in increased cost and system design complexity. Here, a solar‐driven H2 production process requiring a much lower applied bias of 1.05 V is reported whereby aniline (ANI) is oxidized to polyaniline (PANI) at the anode with a yield of 96% and H2 evolution reaction occurs at the cathode with a faradaic efficiency of 98.6 ± 3.9%. The process has multiple advantages including the elimination of ion‐exchange membrane as PANI is a solid product that also is of substantially higher value than O2. For demonstration, a single junction perovskite solar cell and low‐cost earth abundant CoP catalyst are successfully applied for this process. This process contributes to the advancement of solar‐driven low‐cost H2 generation coupled with co‐production of a high‐value product expediting the transition to a hydrogen economy.
A solar‐driven process with co‐production of H2 and a value‐add conductive polyaniline (PANI) polymer is reported. Compared to conventional water splitting, this process is driven at a lower applied bias of 1.05 V without the use of ion‐exchange membrane producing PANI with a higher value than O2.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202204807</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Aniline ; Bias ; Clean fuels ; conductive polymers ; Fossil fuels ; Gas mixtures ; Hydrogen evolution ; Hydrogen production ; Hydrogen-based energy ; Materials science ; Membranes ; Perovskites ; Photovoltaic cells ; Polyanilines ; polymerization ; R&D ; Research & development ; single‐junction perovskite solar cells ; Solar cells ; solar‐driven ; Systems design ; value‐add ; Water splitting</subject><ispartof>Advanced functional materials, 2022-12, Vol.32 (52), p.n/a</ispartof><rights>2022 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3577-4f083ac1637fa3a3222234c227207c00598c0375b91a85132685f64719cebe963</citedby><cites>FETCH-LOGICAL-c3577-4f083ac1637fa3a3222234c227207c00598c0375b91a85132685f64719cebe963</cites><orcidid>0000-0001-9849-4755</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202204807$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202204807$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,1419,27933,27934,45583,45584</link.rule.ids></links><search><creatorcontrib>Chen, Hongjun</creatorcontrib><creatorcontrib>Zheng, Jianghui</creatorcontrib><creatorcontrib>Ballestas‐Barrientos, Alfonso</creatorcontrib><creatorcontrib>Bing, Jueming</creatorcontrib><creatorcontrib>Liao, Chwenhaw</creatorcontrib><creatorcontrib>Yuen, Alexander K. L.</creatorcontrib><creatorcontrib>Fois, Chiara A. M.</creatorcontrib><creatorcontrib>Valtchev, Peter</creatorcontrib><creatorcontrib>Proschogo, Nicholas</creatorcontrib><creatorcontrib>Bremner, Stephen P.</creatorcontrib><creatorcontrib>Atwater, Harry A.</creatorcontrib><creatorcontrib>Boyer, Cyrille</creatorcontrib><creatorcontrib>Maschmeyer, Thomas</creatorcontrib><creatorcontrib>Ho‐Baillie, Anita W. Y.</creatorcontrib><title>Solar‐Driven Co‐Production of Hydrogen and Value‐Add Conductive Polyaniline Polymer</title><title>Advanced functional materials</title><description>To reduce the reliance on fossil fuel, H2, as a clean fuel, has attracted substantial research and development activities in recent years. The traditional water splitting approach requires an applied bias of more than 1.5 V and the use of ion‐selective membranes to prevent the formation of a potentially explosive H2–O2 gas mixture, resulting in increased cost and system design complexity. Here, a solar‐driven H2 production process requiring a much lower applied bias of 1.05 V is reported whereby aniline (ANI) is oxidized to polyaniline (PANI) at the anode with a yield of 96% and H2 evolution reaction occurs at the cathode with a faradaic efficiency of 98.6 ± 3.9%. The process has multiple advantages including the elimination of ion‐exchange membrane as PANI is a solid product that also is of substantially higher value than O2. For demonstration, a single junction perovskite solar cell and low‐cost earth abundant CoP catalyst are successfully applied for this process. This process contributes to the advancement of solar‐driven low‐cost H2 generation coupled with co‐production of a high‐value product expediting the transition to a hydrogen economy.
A solar‐driven process with co‐production of H2 and a value‐add conductive polyaniline (PANI) polymer is reported. Compared to conventional water splitting, this process is driven at a lower applied bias of 1.05 V without the use of ion‐exchange membrane producing PANI with a higher value than O2.</description><subject>Aniline</subject><subject>Bias</subject><subject>Clean fuels</subject><subject>conductive polymers</subject><subject>Fossil fuels</subject><subject>Gas mixtures</subject><subject>Hydrogen evolution</subject><subject>Hydrogen production</subject><subject>Hydrogen-based energy</subject><subject>Materials science</subject><subject>Membranes</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Polyanilines</subject><subject>polymerization</subject><subject>R&D</subject><subject>Research & development</subject><subject>single‐junction perovskite solar cells</subject><subject>Solar cells</subject><subject>solar‐driven</subject><subject>Systems design</subject><subject>value‐add</subject><subject>Water splitting</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkE9LwzAYh4MoOKdXzwXPnW-SNmmPY3NOmDjwD3oKWZpIR5fMdJ305kfwM_pJzKzMo-8lP8jzvC_8EDrHMMAA5FIWZjUgQAgkGfAD1MMMs5gCyQ73GT8fo5O6XgJgzmnSQy_3rpL-6-Nz7MutttHIhTz3rmjUpnQ2ciaatoV3r-FP2iJ6klWjAzIsisDaH2yro7mrWmnLqrRdXml_io6MrGp99vv20ePk6mE0jWd31zej4SxWNOU8TgxkVCrMKDeSSkrC0EQRwglwBZDmmQLK00WOZZZiSliWGpZwnCu90DmjfXTR7V1799boeiOWrvE2nBSEpzwYlOWBGnSU8q6uvTZi7cuV9K3AIHb1iV19Yl9fEPJOeC8r3f5Di-F4cvvnfgNy2nVI</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Chen, Hongjun</creator><creator>Zheng, Jianghui</creator><creator>Ballestas‐Barrientos, Alfonso</creator><creator>Bing, Jueming</creator><creator>Liao, Chwenhaw</creator><creator>Yuen, Alexander K. L.</creator><creator>Fois, Chiara A. M.</creator><creator>Valtchev, Peter</creator><creator>Proschogo, Nicholas</creator><creator>Bremner, Stephen P.</creator><creator>Atwater, Harry A.</creator><creator>Boyer, Cyrille</creator><creator>Maschmeyer, Thomas</creator><creator>Ho‐Baillie, Anita W. Y.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9849-4755</orcidid></search><sort><creationdate>20221201</creationdate><title>Solar‐Driven Co‐Production of Hydrogen and Value‐Add Conductive Polyaniline Polymer</title><author>Chen, Hongjun ; Zheng, Jianghui ; Ballestas‐Barrientos, Alfonso ; Bing, Jueming ; Liao, Chwenhaw ; Yuen, Alexander K. L. ; Fois, Chiara A. M. ; Valtchev, Peter ; Proschogo, Nicholas ; Bremner, Stephen P. ; Atwater, Harry A. ; Boyer, Cyrille ; Maschmeyer, Thomas ; Ho‐Baillie, Anita W. Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3577-4f083ac1637fa3a3222234c227207c00598c0375b91a85132685f64719cebe963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aniline</topic><topic>Bias</topic><topic>Clean fuels</topic><topic>conductive polymers</topic><topic>Fossil fuels</topic><topic>Gas mixtures</topic><topic>Hydrogen evolution</topic><topic>Hydrogen production</topic><topic>Hydrogen-based energy</topic><topic>Materials science</topic><topic>Membranes</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Polyanilines</topic><topic>polymerization</topic><topic>R&D</topic><topic>Research & development</topic><topic>single‐junction perovskite solar cells</topic><topic>Solar cells</topic><topic>solar‐driven</topic><topic>Systems design</topic><topic>value‐add</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Hongjun</creatorcontrib><creatorcontrib>Zheng, Jianghui</creatorcontrib><creatorcontrib>Ballestas‐Barrientos, Alfonso</creatorcontrib><creatorcontrib>Bing, Jueming</creatorcontrib><creatorcontrib>Liao, Chwenhaw</creatorcontrib><creatorcontrib>Yuen, Alexander K. L.</creatorcontrib><creatorcontrib>Fois, Chiara A. M.</creatorcontrib><creatorcontrib>Valtchev, Peter</creatorcontrib><creatorcontrib>Proschogo, Nicholas</creatorcontrib><creatorcontrib>Bremner, Stephen P.</creatorcontrib><creatorcontrib>Atwater, Harry A.</creatorcontrib><creatorcontrib>Boyer, Cyrille</creatorcontrib><creatorcontrib>Maschmeyer, Thomas</creatorcontrib><creatorcontrib>Ho‐Baillie, Anita W. Y.</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Hongjun</au><au>Zheng, Jianghui</au><au>Ballestas‐Barrientos, Alfonso</au><au>Bing, Jueming</au><au>Liao, Chwenhaw</au><au>Yuen, Alexander K. L.</au><au>Fois, Chiara A. M.</au><au>Valtchev, Peter</au><au>Proschogo, Nicholas</au><au>Bremner, Stephen P.</au><au>Atwater, Harry A.</au><au>Boyer, Cyrille</au><au>Maschmeyer, Thomas</au><au>Ho‐Baillie, Anita W. Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solar‐Driven Co‐Production of Hydrogen and Value‐Add Conductive Polyaniline Polymer</atitle><jtitle>Advanced functional materials</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>32</volume><issue>52</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>To reduce the reliance on fossil fuel, H2, as a clean fuel, has attracted substantial research and development activities in recent years. The traditional water splitting approach requires an applied bias of more than 1.5 V and the use of ion‐selective membranes to prevent the formation of a potentially explosive H2–O2 gas mixture, resulting in increased cost and system design complexity. Here, a solar‐driven H2 production process requiring a much lower applied bias of 1.05 V is reported whereby aniline (ANI) is oxidized to polyaniline (PANI) at the anode with a yield of 96% and H2 evolution reaction occurs at the cathode with a faradaic efficiency of 98.6 ± 3.9%. The process has multiple advantages including the elimination of ion‐exchange membrane as PANI is a solid product that also is of substantially higher value than O2. For demonstration, a single junction perovskite solar cell and low‐cost earth abundant CoP catalyst are successfully applied for this process. This process contributes to the advancement of solar‐driven low‐cost H2 generation coupled with co‐production of a high‐value product expediting the transition to a hydrogen economy.
A solar‐driven process with co‐production of H2 and a value‐add conductive polyaniline (PANI) polymer is reported. Compared to conventional water splitting, this process is driven at a lower applied bias of 1.05 V without the use of ion‐exchange membrane producing PANI with a higher value than O2.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202204807</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9849-4755</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2022-12, Vol.32 (52), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2757132369 |
source | Access via Wiley Online Library |
subjects | Aniline Bias Clean fuels conductive polymers Fossil fuels Gas mixtures Hydrogen evolution Hydrogen production Hydrogen-based energy Materials science Membranes Perovskites Photovoltaic cells Polyanilines polymerization R&D Research & development single‐junction perovskite solar cells Solar cells solar‐driven Systems design value‐add Water splitting |
title | Solar‐Driven Co‐Production of Hydrogen and Value‐Add Conductive Polyaniline Polymer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T13%3A31%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solar%E2%80%90Driven%20Co%E2%80%90Production%20of%20Hydrogen%20and%20Value%E2%80%90Add%20Conductive%20Polyaniline%20Polymer&rft.jtitle=Advanced%20functional%20materials&rft.au=Chen,%20Hongjun&rft.date=2022-12-01&rft.volume=32&rft.issue=52&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202204807&rft_dat=%3Cproquest_cross%3E2757132369%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2757132369&rft_id=info:pmid/&rfr_iscdi=true |