High‐Performance Phototransistor Based on Graphene/Organic Heterostructure for In‐Chip Visual Processing and Pulse Monitoring

Mimicking the real‐time sensing and processing capabilities of human retina opens up a promising pathway for achieving vision chips with high‐efficient image processing. The development of retina‐inspired vision chip also requires hardware with high sensitivity, fast image capture, and the ability t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2022-12, Vol.32 (52), p.n/a
Hauptverfasser: Han, Chao, Liu, Xianchao, Han, Xingwei, He, Meiyu, Han, Jiayue, Zhang, He, Hou, Xin, Zhou, Hongxi, Yu, He, Wu, Zhiming, Gou, Jun, Wang, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 52
container_start_page
container_title Advanced functional materials
container_volume 32
creator Han, Chao
Liu, Xianchao
Han, Xingwei
He, Meiyu
Han, Jiayue
Zhang, He
Hou, Xin
Zhou, Hongxi
Yu, He
Wu, Zhiming
Gou, Jun
Wang, Jun
description Mimicking the real‐time sensing and processing capabilities of human retina opens up a promising pathway for achieving vision chips with high‐efficient image processing. The development of retina‐inspired vision chip also requires hardware with high sensitivity, fast image capture, and the ability to sense under various lighting conditions. Herein, a high‐performance phototransistor based on graphene/organic heterojunction is demonstrated with a superior responsivity (2.86 × 106 A W−1), an outstanding respond speed (rise time/fall time is 20 µs/8.4 ms), and a remarkable detectivity (1.47 × 1014 Jones) at 650 nm. The phototransistor combines weak‐light detection capability (minimum detectable light intensity down to 2.8 nW cm−2) with gate‐tunable bi‐directional photoresponse capable of simultaneously sensing and processing visual images for light intensities ranging over six orders magnitude (10–107nW cm−2). Moreover, the phototransistor also exhibits an intriguing feature undiscovered in other retina‐inspired devices, namely that it can real‐time monitor the human pulse signal and heart rate by using photoplethysmography technology, and the measured heart rate error is only 0.87% compared with a commercially available sensor. This study paves the way for the development of low‐light and bio‐signal sensitive artificial retinas in the future. In this work, a graphene/bulk heterojunction phototransistor is presented for applications as photodetector, vision sensor, and pulse sensor for the first time. The phototransistor has a gate‐tunable bi‐directional photoresponse for in‐chip image processing. Moreover, the phototransistor can monitor human pulse signal and heart rate in real time. This work paves the way for the future development of multifunction artificial retinas.
doi_str_mv 10.1002/adfm.202209680
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2757131948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2757131948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3170-c03c369b968b066daee6eafa7a5bcd6efc9cd07f538b74bfaf8b0dbd0c3986bd3</originalsourceid><addsrcrecordid>eNqFkM1OAjEUhSdGExHdum7ieqCdQmdmiSg_CQQWatxNOu0tUwIttjMx7PQNfEafxBIMLl3dm5vvnJtzouiW4A7BOOlyqbadBCcJzlmGz6IWYYTFFCfZ-Wknr5fRlfdrjEma0l4r-pzoVfX98bUEp6zbciMALStb29px47WvrUP33INE1qCx47sKDHQXbsWNFmgCNTjra9eIunGAggWammA3rPQOvWjf8A1aOivAe21WiBuJls3GA5pbo4N3OF5HF4qH083vbEfPo8en4SSeLcbT4WAWC0pSHAtMBWV5GbKVmDHJARhwxVPeL4VkoEQuJE5Vn2Zl2isVV4GTpcSC5hkrJW1Hd0ffnbNvDfi6WNvGmfCySNJ-SijJe1mgOkdKhFzegSp2Tm-52xcEF4eai0PNxanmIMiPgne9gf0_dDF4GM3_tD-tQ4di</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2757131948</pqid></control><display><type>article</type><title>High‐Performance Phototransistor Based on Graphene/Organic Heterostructure for In‐Chip Visual Processing and Pulse Monitoring</title><source>Access via Wiley Online Library</source><creator>Han, Chao ; Liu, Xianchao ; Han, Xingwei ; He, Meiyu ; Han, Jiayue ; Zhang, He ; Hou, Xin ; Zhou, Hongxi ; Yu, He ; Wu, Zhiming ; Gou, Jun ; Wang, Jun</creator><creatorcontrib>Han, Chao ; Liu, Xianchao ; Han, Xingwei ; He, Meiyu ; Han, Jiayue ; Zhang, He ; Hou, Xin ; Zhou, Hongxi ; Yu, He ; Wu, Zhiming ; Gou, Jun ; Wang, Jun</creatorcontrib><description>Mimicking the real‐time sensing and processing capabilities of human retina opens up a promising pathway for achieving vision chips with high‐efficient image processing. The development of retina‐inspired vision chip also requires hardware with high sensitivity, fast image capture, and the ability to sense under various lighting conditions. Herein, a high‐performance phototransistor based on graphene/organic heterojunction is demonstrated with a superior responsivity (2.86 × 106 A W−1), an outstanding respond speed (rise time/fall time is 20 µs/8.4 ms), and a remarkable detectivity (1.47 × 1014 Jones) at 650 nm. The phototransistor combines weak‐light detection capability (minimum detectable light intensity down to 2.8 nW cm−2) with gate‐tunable bi‐directional photoresponse capable of simultaneously sensing and processing visual images for light intensities ranging over six orders magnitude (10–107nW cm−2). Moreover, the phototransistor also exhibits an intriguing feature undiscovered in other retina‐inspired devices, namely that it can real‐time monitor the human pulse signal and heart rate by using photoplethysmography technology, and the measured heart rate error is only 0.87% compared with a commercially available sensor. This study paves the way for the development of low‐light and bio‐signal sensitive artificial retinas in the future. In this work, a graphene/bulk heterojunction phototransistor is presented for applications as photodetector, vision sensor, and pulse sensor for the first time. The phototransistor has a gate‐tunable bi‐directional photoresponse for in‐chip image processing. Moreover, the phototransistor can monitor human pulse signal and heart rate in real time. This work paves the way for the future development of multifunction artificial retinas.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202209680</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Error analysis ; gate‐tunable bi‐directional photoresponses ; Graphene ; graphene/organic phototransistors ; Heart rate ; Heterojunctions ; Heterostructures ; Image processing ; in‐chip processing ; Luminous intensity ; Materials science ; pulse monitoring ; Retina ; Vision ; weak‐light detection</subject><ispartof>Advanced functional materials, 2022-12, Vol.32 (52), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3170-c03c369b968b066daee6eafa7a5bcd6efc9cd07f538b74bfaf8b0dbd0c3986bd3</citedby><cites>FETCH-LOGICAL-c3170-c03c369b968b066daee6eafa7a5bcd6efc9cd07f538b74bfaf8b0dbd0c3986bd3</cites><orcidid>0000-0003-2370-2964 ; 0000-0001-6154-9206</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202209680$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202209680$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids></links><search><creatorcontrib>Han, Chao</creatorcontrib><creatorcontrib>Liu, Xianchao</creatorcontrib><creatorcontrib>Han, Xingwei</creatorcontrib><creatorcontrib>He, Meiyu</creatorcontrib><creatorcontrib>Han, Jiayue</creatorcontrib><creatorcontrib>Zhang, He</creatorcontrib><creatorcontrib>Hou, Xin</creatorcontrib><creatorcontrib>Zhou, Hongxi</creatorcontrib><creatorcontrib>Yu, He</creatorcontrib><creatorcontrib>Wu, Zhiming</creatorcontrib><creatorcontrib>Gou, Jun</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><title>High‐Performance Phototransistor Based on Graphene/Organic Heterostructure for In‐Chip Visual Processing and Pulse Monitoring</title><title>Advanced functional materials</title><description>Mimicking the real‐time sensing and processing capabilities of human retina opens up a promising pathway for achieving vision chips with high‐efficient image processing. The development of retina‐inspired vision chip also requires hardware with high sensitivity, fast image capture, and the ability to sense under various lighting conditions. Herein, a high‐performance phototransistor based on graphene/organic heterojunction is demonstrated with a superior responsivity (2.86 × 106 A W−1), an outstanding respond speed (rise time/fall time is 20 µs/8.4 ms), and a remarkable detectivity (1.47 × 1014 Jones) at 650 nm. The phototransistor combines weak‐light detection capability (minimum detectable light intensity down to 2.8 nW cm−2) with gate‐tunable bi‐directional photoresponse capable of simultaneously sensing and processing visual images for light intensities ranging over six orders magnitude (10–107nW cm−2). Moreover, the phototransistor also exhibits an intriguing feature undiscovered in other retina‐inspired devices, namely that it can real‐time monitor the human pulse signal and heart rate by using photoplethysmography technology, and the measured heart rate error is only 0.87% compared with a commercially available sensor. This study paves the way for the development of low‐light and bio‐signal sensitive artificial retinas in the future. In this work, a graphene/bulk heterojunction phototransistor is presented for applications as photodetector, vision sensor, and pulse sensor for the first time. The phototransistor has a gate‐tunable bi‐directional photoresponse for in‐chip image processing. Moreover, the phototransistor can monitor human pulse signal and heart rate in real time. This work paves the way for the future development of multifunction artificial retinas.</description><subject>Error analysis</subject><subject>gate‐tunable bi‐directional photoresponses</subject><subject>Graphene</subject><subject>graphene/organic phototransistors</subject><subject>Heart rate</subject><subject>Heterojunctions</subject><subject>Heterostructures</subject><subject>Image processing</subject><subject>in‐chip processing</subject><subject>Luminous intensity</subject><subject>Materials science</subject><subject>pulse monitoring</subject><subject>Retina</subject><subject>Vision</subject><subject>weak‐light detection</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OAjEUhSdGExHdum7ieqCdQmdmiSg_CQQWatxNOu0tUwIttjMx7PQNfEafxBIMLl3dm5vvnJtzouiW4A7BOOlyqbadBCcJzlmGz6IWYYTFFCfZ-Wknr5fRlfdrjEma0l4r-pzoVfX98bUEp6zbciMALStb29px47WvrUP33INE1qCx47sKDHQXbsWNFmgCNTjra9eIunGAggWammA3rPQOvWjf8A1aOivAe21WiBuJls3GA5pbo4N3OF5HF4qH083vbEfPo8en4SSeLcbT4WAWC0pSHAtMBWV5GbKVmDHJARhwxVPeL4VkoEQuJE5Vn2Zl2isVV4GTpcSC5hkrJW1Hd0ffnbNvDfi6WNvGmfCySNJ-SijJe1mgOkdKhFzegSp2Tm-52xcEF4eai0PNxanmIMiPgne9gf0_dDF4GM3_tD-tQ4di</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Han, Chao</creator><creator>Liu, Xianchao</creator><creator>Han, Xingwei</creator><creator>He, Meiyu</creator><creator>Han, Jiayue</creator><creator>Zhang, He</creator><creator>Hou, Xin</creator><creator>Zhou, Hongxi</creator><creator>Yu, He</creator><creator>Wu, Zhiming</creator><creator>Gou, Jun</creator><creator>Wang, Jun</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2370-2964</orcidid><orcidid>https://orcid.org/0000-0001-6154-9206</orcidid></search><sort><creationdate>20221201</creationdate><title>High‐Performance Phototransistor Based on Graphene/Organic Heterostructure for In‐Chip Visual Processing and Pulse Monitoring</title><author>Han, Chao ; Liu, Xianchao ; Han, Xingwei ; He, Meiyu ; Han, Jiayue ; Zhang, He ; Hou, Xin ; Zhou, Hongxi ; Yu, He ; Wu, Zhiming ; Gou, Jun ; Wang, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3170-c03c369b968b066daee6eafa7a5bcd6efc9cd07f538b74bfaf8b0dbd0c3986bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Error analysis</topic><topic>gate‐tunable bi‐directional photoresponses</topic><topic>Graphene</topic><topic>graphene/organic phototransistors</topic><topic>Heart rate</topic><topic>Heterojunctions</topic><topic>Heterostructures</topic><topic>Image processing</topic><topic>in‐chip processing</topic><topic>Luminous intensity</topic><topic>Materials science</topic><topic>pulse monitoring</topic><topic>Retina</topic><topic>Vision</topic><topic>weak‐light detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Chao</creatorcontrib><creatorcontrib>Liu, Xianchao</creatorcontrib><creatorcontrib>Han, Xingwei</creatorcontrib><creatorcontrib>He, Meiyu</creatorcontrib><creatorcontrib>Han, Jiayue</creatorcontrib><creatorcontrib>Zhang, He</creatorcontrib><creatorcontrib>Hou, Xin</creatorcontrib><creatorcontrib>Zhou, Hongxi</creatorcontrib><creatorcontrib>Yu, He</creatorcontrib><creatorcontrib>Wu, Zhiming</creatorcontrib><creatorcontrib>Gou, Jun</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Chao</au><au>Liu, Xianchao</au><au>Han, Xingwei</au><au>He, Meiyu</au><au>Han, Jiayue</au><au>Zhang, He</au><au>Hou, Xin</au><au>Zhou, Hongxi</au><au>Yu, He</au><au>Wu, Zhiming</au><au>Gou, Jun</au><au>Wang, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High‐Performance Phototransistor Based on Graphene/Organic Heterostructure for In‐Chip Visual Processing and Pulse Monitoring</atitle><jtitle>Advanced functional materials</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>32</volume><issue>52</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Mimicking the real‐time sensing and processing capabilities of human retina opens up a promising pathway for achieving vision chips with high‐efficient image processing. The development of retina‐inspired vision chip also requires hardware with high sensitivity, fast image capture, and the ability to sense under various lighting conditions. Herein, a high‐performance phototransistor based on graphene/organic heterojunction is demonstrated with a superior responsivity (2.86 × 106 A W−1), an outstanding respond speed (rise time/fall time is 20 µs/8.4 ms), and a remarkable detectivity (1.47 × 1014 Jones) at 650 nm. The phototransistor combines weak‐light detection capability (minimum detectable light intensity down to 2.8 nW cm−2) with gate‐tunable bi‐directional photoresponse capable of simultaneously sensing and processing visual images for light intensities ranging over six orders magnitude (10–107nW cm−2). Moreover, the phototransistor also exhibits an intriguing feature undiscovered in other retina‐inspired devices, namely that it can real‐time monitor the human pulse signal and heart rate by using photoplethysmography technology, and the measured heart rate error is only 0.87% compared with a commercially available sensor. This study paves the way for the development of low‐light and bio‐signal sensitive artificial retinas in the future. In this work, a graphene/bulk heterojunction phototransistor is presented for applications as photodetector, vision sensor, and pulse sensor for the first time. The phototransistor has a gate‐tunable bi‐directional photoresponse for in‐chip image processing. Moreover, the phototransistor can monitor human pulse signal and heart rate in real time. This work paves the way for the future development of multifunction artificial retinas.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202209680</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2370-2964</orcidid><orcidid>https://orcid.org/0000-0001-6154-9206</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2022-12, Vol.32 (52), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2757131948
source Access via Wiley Online Library
subjects Error analysis
gate‐tunable bi‐directional photoresponses
Graphene
graphene/organic phototransistors
Heart rate
Heterojunctions
Heterostructures
Image processing
in‐chip processing
Luminous intensity
Materials science
pulse monitoring
Retina
Vision
weak‐light detection
title High‐Performance Phototransistor Based on Graphene/Organic Heterostructure for In‐Chip Visual Processing and Pulse Monitoring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T09%3A22%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%E2%80%90Performance%20Phototransistor%20Based%20on%20Graphene/Organic%20Heterostructure%20for%20In%E2%80%90Chip%20Visual%20Processing%20and%20Pulse%20Monitoring&rft.jtitle=Advanced%20functional%20materials&rft.au=Han,%20Chao&rft.date=2022-12-01&rft.volume=32&rft.issue=52&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202209680&rft_dat=%3Cproquest_cross%3E2757131948%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2757131948&rft_id=info:pmid/&rfr_iscdi=true