Flexible ZnO Nanosheet‐Based Artificial Synapses Prepared by Low‐Temperature Process for High Recognition Accuracy Neuromorphic Computing
In neuromorphic computing networks, a flexible synaptic memristor with high recognition accuracy is highly desired. In this study, ZnO nanosheets (ZnO NS) embedded within a polymethyl methacrylate host material are used as the intermediate layer to prepare flexible synaptic memristor at a low‐temper...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2022-12, Vol.32 (52), p.n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 52 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 32 |
creator | Wang, YiLong Cao, Minghui Bian, Jing Li, Qiang Su, Jie |
description | In neuromorphic computing networks, a flexible synaptic memristor with high recognition accuracy is highly desired. In this study, ZnO nanosheets (ZnO NS) embedded within a polymethyl methacrylate host material are used as the intermediate layer to prepare flexible synaptic memristor at a low‐temperature of 80 °C. The device shows excellent switching characteristics with low SET/RESET voltages (−0.4 V/0.4 V) and stable retention characteristic (104 s). By modulating the conductance continuously, the flexible synaptic memristor simulates typical synaptic plasticities, including excitation post‐synaptic current, paired‐pulse facilitation, and spike‐timing dependent plasticity. Especially, the neuromorphic system built from flexible ZnO NS‐based memristors achieves a high recognition accuracy up to 97.7% for handwriting digit. Under the influence of 5% Uniform noise and 5% Gaussian noise, recognition accuracies are maintained at 94.6% and 93.7%, respectively. These properties are well maintained even when bending 1000 times at a radius of 5 mm. The flexible ZnO NS‐based memristor shows great prospects in wearable devices and neural morphology calculation.
The ZnO NS‐based artificial synapses are prepared at low temperature by a simple spin coating process. Combining various characterization techniques and data analysis, the weight transition process in artificial synapses is recognized, In addition, the typical synaptic plasticity and high recognition accuracy are realized and kept stable under a series of bending operations. |
doi_str_mv | 10.1002/adfm.202209907 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2757131931</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2757131931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3177-7be8d4d7c318082754b0fc3368087c8a8c4e8c67a6115dbc6ff0f1b638fb72413</originalsourceid><addsrcrecordid>eNqFUM9LwzAULqLgnF49BzxvJk3XtMc5nRPmJjpBvJQ0fdky2qYmLbM3_wHBv9G_xIzJPHp67-P78R6f550T3CcY-5c8k0Xfx76P4xizA69DQhL2KPajw_1OXo69E2vXGBPGaNDxPsc5vKs0B_RaztGMl9quAOrvj68rbiFDQ1MrqYTiOXpqS15ZsOjBQMWNI9MWTfXGaRdQVGB43RhwrBZgLZLaoIlartAjCL0sVa10iYZCNIaLFs2gMbrQplopgUa6qJpalctT70jy3MLZ7-x6z-ObxWjSm85v70bDaU9Q93ePpRBlQcYcinDks0GQYikoDR1iIuKRCCASIeMhIYMsFaGUWJI0pJFMmR8Q2vUudrmV0W8N2DpZ68aU7mTi0hihJKZbVX-nEkZba0AmlVEFN21CcLKtPNlWnuwrd4Z4Z9ioHNp_1Mnwenz_5_0BL1yJkw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2757131931</pqid></control><display><type>article</type><title>Flexible ZnO Nanosheet‐Based Artificial Synapses Prepared by Low‐Temperature Process for High Recognition Accuracy Neuromorphic Computing</title><source>Wiley Journals</source><creator>Wang, YiLong ; Cao, Minghui ; Bian, Jing ; Li, Qiang ; Su, Jie</creator><creatorcontrib>Wang, YiLong ; Cao, Minghui ; Bian, Jing ; Li, Qiang ; Su, Jie</creatorcontrib><description>In neuromorphic computing networks, a flexible synaptic memristor with high recognition accuracy is highly desired. In this study, ZnO nanosheets (ZnO NS) embedded within a polymethyl methacrylate host material are used as the intermediate layer to prepare flexible synaptic memristor at a low‐temperature of 80 °C. The device shows excellent switching characteristics with low SET/RESET voltages (−0.4 V/0.4 V) and stable retention characteristic (104 s). By modulating the conductance continuously, the flexible synaptic memristor simulates typical synaptic plasticities, including excitation post‐synaptic current, paired‐pulse facilitation, and spike‐timing dependent plasticity. Especially, the neuromorphic system built from flexible ZnO NS‐based memristors achieves a high recognition accuracy up to 97.7% for handwriting digit. Under the influence of 5% Uniform noise and 5% Gaussian noise, recognition accuracies are maintained at 94.6% and 93.7%, respectively. These properties are well maintained even when bending 1000 times at a radius of 5 mm. The flexible ZnO NS‐based memristor shows great prospects in wearable devices and neural morphology calculation.
The ZnO NS‐based artificial synapses are prepared at low temperature by a simple spin coating process. Combining various characterization techniques and data analysis, the weight transition process in artificial synapses is recognized, In addition, the typical synaptic plasticity and high recognition accuracy are realized and kept stable under a series of bending operations.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202209907</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Accuracy ; artificial synapses ; flexibilities ; Handwriting recognition ; Materials science ; Memristors ; Nanosheets ; Neuromorphic computing ; Polymethyl methacrylate ; Random noise ; Synapses ; Wearable technology ; Zinc oxide ; ZnO nanosheets</subject><ispartof>Advanced functional materials, 2022-12, Vol.32 (52), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3177-7be8d4d7c318082754b0fc3368087c8a8c4e8c67a6115dbc6ff0f1b638fb72413</citedby><cites>FETCH-LOGICAL-c3177-7be8d4d7c318082754b0fc3368087c8a8c4e8c67a6115dbc6ff0f1b638fb72413</cites><orcidid>0000-0001-7063-3100</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202209907$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202209907$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Wang, YiLong</creatorcontrib><creatorcontrib>Cao, Minghui</creatorcontrib><creatorcontrib>Bian, Jing</creatorcontrib><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Su, Jie</creatorcontrib><title>Flexible ZnO Nanosheet‐Based Artificial Synapses Prepared by Low‐Temperature Process for High Recognition Accuracy Neuromorphic Computing</title><title>Advanced functional materials</title><description>In neuromorphic computing networks, a flexible synaptic memristor with high recognition accuracy is highly desired. In this study, ZnO nanosheets (ZnO NS) embedded within a polymethyl methacrylate host material are used as the intermediate layer to prepare flexible synaptic memristor at a low‐temperature of 80 °C. The device shows excellent switching characteristics with low SET/RESET voltages (−0.4 V/0.4 V) and stable retention characteristic (104 s). By modulating the conductance continuously, the flexible synaptic memristor simulates typical synaptic plasticities, including excitation post‐synaptic current, paired‐pulse facilitation, and spike‐timing dependent plasticity. Especially, the neuromorphic system built from flexible ZnO NS‐based memristors achieves a high recognition accuracy up to 97.7% for handwriting digit. Under the influence of 5% Uniform noise and 5% Gaussian noise, recognition accuracies are maintained at 94.6% and 93.7%, respectively. These properties are well maintained even when bending 1000 times at a radius of 5 mm. The flexible ZnO NS‐based memristor shows great prospects in wearable devices and neural morphology calculation.
The ZnO NS‐based artificial synapses are prepared at low temperature by a simple spin coating process. Combining various characterization techniques and data analysis, the weight transition process in artificial synapses is recognized, In addition, the typical synaptic plasticity and high recognition accuracy are realized and kept stable under a series of bending operations.</description><subject>Accuracy</subject><subject>artificial synapses</subject><subject>flexibilities</subject><subject>Handwriting recognition</subject><subject>Materials science</subject><subject>Memristors</subject><subject>Nanosheets</subject><subject>Neuromorphic computing</subject><subject>Polymethyl methacrylate</subject><subject>Random noise</subject><subject>Synapses</subject><subject>Wearable technology</subject><subject>Zinc oxide</subject><subject>ZnO nanosheets</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFUM9LwzAULqLgnF49BzxvJk3XtMc5nRPmJjpBvJQ0fdky2qYmLbM3_wHBv9G_xIzJPHp67-P78R6f550T3CcY-5c8k0Xfx76P4xizA69DQhL2KPajw_1OXo69E2vXGBPGaNDxPsc5vKs0B_RaztGMl9quAOrvj68rbiFDQ1MrqYTiOXpqS15ZsOjBQMWNI9MWTfXGaRdQVGB43RhwrBZgLZLaoIlartAjCL0sVa10iYZCNIaLFs2gMbrQplopgUa6qJpalctT70jy3MLZ7-x6z-ObxWjSm85v70bDaU9Q93ePpRBlQcYcinDks0GQYikoDR1iIuKRCCASIeMhIYMsFaGUWJI0pJFMmR8Q2vUudrmV0W8N2DpZ68aU7mTi0hihJKZbVX-nEkZba0AmlVEFN21CcLKtPNlWnuwrd4Z4Z9ioHNp_1Mnwenz_5_0BL1yJkw</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Wang, YiLong</creator><creator>Cao, Minghui</creator><creator>Bian, Jing</creator><creator>Li, Qiang</creator><creator>Su, Jie</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7063-3100</orcidid></search><sort><creationdate>20221201</creationdate><title>Flexible ZnO Nanosheet‐Based Artificial Synapses Prepared by Low‐Temperature Process for High Recognition Accuracy Neuromorphic Computing</title><author>Wang, YiLong ; Cao, Minghui ; Bian, Jing ; Li, Qiang ; Su, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3177-7be8d4d7c318082754b0fc3368087c8a8c4e8c67a6115dbc6ff0f1b638fb72413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>artificial synapses</topic><topic>flexibilities</topic><topic>Handwriting recognition</topic><topic>Materials science</topic><topic>Memristors</topic><topic>Nanosheets</topic><topic>Neuromorphic computing</topic><topic>Polymethyl methacrylate</topic><topic>Random noise</topic><topic>Synapses</topic><topic>Wearable technology</topic><topic>Zinc oxide</topic><topic>ZnO nanosheets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, YiLong</creatorcontrib><creatorcontrib>Cao, Minghui</creatorcontrib><creatorcontrib>Bian, Jing</creatorcontrib><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Su, Jie</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, YiLong</au><au>Cao, Minghui</au><au>Bian, Jing</au><au>Li, Qiang</au><au>Su, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flexible ZnO Nanosheet‐Based Artificial Synapses Prepared by Low‐Temperature Process for High Recognition Accuracy Neuromorphic Computing</atitle><jtitle>Advanced functional materials</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>32</volume><issue>52</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>In neuromorphic computing networks, a flexible synaptic memristor with high recognition accuracy is highly desired. In this study, ZnO nanosheets (ZnO NS) embedded within a polymethyl methacrylate host material are used as the intermediate layer to prepare flexible synaptic memristor at a low‐temperature of 80 °C. The device shows excellent switching characteristics with low SET/RESET voltages (−0.4 V/0.4 V) and stable retention characteristic (104 s). By modulating the conductance continuously, the flexible synaptic memristor simulates typical synaptic plasticities, including excitation post‐synaptic current, paired‐pulse facilitation, and spike‐timing dependent plasticity. Especially, the neuromorphic system built from flexible ZnO NS‐based memristors achieves a high recognition accuracy up to 97.7% for handwriting digit. Under the influence of 5% Uniform noise and 5% Gaussian noise, recognition accuracies are maintained at 94.6% and 93.7%, respectively. These properties are well maintained even when bending 1000 times at a radius of 5 mm. The flexible ZnO NS‐based memristor shows great prospects in wearable devices and neural morphology calculation.
The ZnO NS‐based artificial synapses are prepared at low temperature by a simple spin coating process. Combining various characterization techniques and data analysis, the weight transition process in artificial synapses is recognized, In addition, the typical synaptic plasticity and high recognition accuracy are realized and kept stable under a series of bending operations.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202209907</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7063-3100</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2022-12, Vol.32 (52), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2757131931 |
source | Wiley Journals |
subjects | Accuracy artificial synapses flexibilities Handwriting recognition Materials science Memristors Nanosheets Neuromorphic computing Polymethyl methacrylate Random noise Synapses Wearable technology Zinc oxide ZnO nanosheets |
title | Flexible ZnO Nanosheet‐Based Artificial Synapses Prepared by Low‐Temperature Process for High Recognition Accuracy Neuromorphic Computing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T09%3A06%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flexible%20ZnO%20Nanosheet%E2%80%90Based%20Artificial%20Synapses%20Prepared%20by%20Low%E2%80%90Temperature%20Process%20for%20High%20Recognition%20Accuracy%20Neuromorphic%20Computing&rft.jtitle=Advanced%20functional%20materials&rft.au=Wang,%20YiLong&rft.date=2022-12-01&rft.volume=32&rft.issue=52&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202209907&rft_dat=%3Cproquest_cross%3E2757131931%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2757131931&rft_id=info:pmid/&rfr_iscdi=true |