Flexible ZnO Nanosheet‐Based Artificial Synapses Prepared by Low‐Temperature Process for High Recognition Accuracy Neuromorphic Computing

In neuromorphic computing networks, a flexible synaptic memristor with high recognition accuracy is highly desired. In this study, ZnO nanosheets (ZnO NS) embedded within a polymethyl methacrylate host material are used as the intermediate layer to prepare flexible synaptic memristor at a low‐temper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2022-12, Vol.32 (52), p.n/a
Hauptverfasser: Wang, YiLong, Cao, Minghui, Bian, Jing, Li, Qiang, Su, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 52
container_start_page
container_title Advanced functional materials
container_volume 32
creator Wang, YiLong
Cao, Minghui
Bian, Jing
Li, Qiang
Su, Jie
description In neuromorphic computing networks, a flexible synaptic memristor with high recognition accuracy is highly desired. In this study, ZnO nanosheets (ZnO NS) embedded within a polymethyl methacrylate host material are used as the intermediate layer to prepare flexible synaptic memristor at a low‐temperature of 80 °C. The device shows excellent switching characteristics with low SET/RESET voltages (−0.4 V/0.4 V) and stable retention characteristic (104 s). By modulating the conductance continuously, the flexible synaptic memristor simulates typical synaptic plasticities, including excitation post‐synaptic current, paired‐pulse facilitation, and spike‐timing dependent plasticity. Especially, the neuromorphic system built from flexible ZnO NS‐based memristors achieves a high recognition accuracy up to 97.7% for handwriting digit. Under the influence of 5% Uniform noise and 5% Gaussian noise, recognition accuracies are maintained at 94.6% and 93.7%, respectively. These properties are well maintained even when bending 1000 times at a radius of 5 mm. The flexible ZnO NS‐based memristor shows great prospects in wearable devices and neural morphology calculation. The ZnO NS‐based artificial synapses are prepared at low temperature by a simple spin coating process. Combining various characterization techniques and data analysis, the weight transition process in artificial synapses is recognized, In addition, the typical synaptic plasticity and high recognition accuracy are realized and kept stable under a series of bending operations.
doi_str_mv 10.1002/adfm.202209907
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2757131931</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2757131931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3177-7be8d4d7c318082754b0fc3368087c8a8c4e8c67a6115dbc6ff0f1b638fb72413</originalsourceid><addsrcrecordid>eNqFUM9LwzAULqLgnF49BzxvJk3XtMc5nRPmJjpBvJQ0fdky2qYmLbM3_wHBv9G_xIzJPHp67-P78R6f550T3CcY-5c8k0Xfx76P4xizA69DQhL2KPajw_1OXo69E2vXGBPGaNDxPsc5vKs0B_RaztGMl9quAOrvj68rbiFDQ1MrqYTiOXpqS15ZsOjBQMWNI9MWTfXGaRdQVGB43RhwrBZgLZLaoIlartAjCL0sVa10iYZCNIaLFs2gMbrQplopgUa6qJpalctT70jy3MLZ7-x6z-ObxWjSm85v70bDaU9Q93ePpRBlQcYcinDks0GQYikoDR1iIuKRCCASIeMhIYMsFaGUWJI0pJFMmR8Q2vUudrmV0W8N2DpZ68aU7mTi0hihJKZbVX-nEkZba0AmlVEFN21CcLKtPNlWnuwrd4Z4Z9ioHNp_1Mnwenz_5_0BL1yJkw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2757131931</pqid></control><display><type>article</type><title>Flexible ZnO Nanosheet‐Based Artificial Synapses Prepared by Low‐Temperature Process for High Recognition Accuracy Neuromorphic Computing</title><source>Wiley Journals</source><creator>Wang, YiLong ; Cao, Minghui ; Bian, Jing ; Li, Qiang ; Su, Jie</creator><creatorcontrib>Wang, YiLong ; Cao, Minghui ; Bian, Jing ; Li, Qiang ; Su, Jie</creatorcontrib><description>In neuromorphic computing networks, a flexible synaptic memristor with high recognition accuracy is highly desired. In this study, ZnO nanosheets (ZnO NS) embedded within a polymethyl methacrylate host material are used as the intermediate layer to prepare flexible synaptic memristor at a low‐temperature of 80 °C. The device shows excellent switching characteristics with low SET/RESET voltages (−0.4 V/0.4 V) and stable retention characteristic (104 s). By modulating the conductance continuously, the flexible synaptic memristor simulates typical synaptic plasticities, including excitation post‐synaptic current, paired‐pulse facilitation, and spike‐timing dependent plasticity. Especially, the neuromorphic system built from flexible ZnO NS‐based memristors achieves a high recognition accuracy up to 97.7% for handwriting digit. Under the influence of 5% Uniform noise and 5% Gaussian noise, recognition accuracies are maintained at 94.6% and 93.7%, respectively. These properties are well maintained even when bending 1000 times at a radius of 5 mm. The flexible ZnO NS‐based memristor shows great prospects in wearable devices and neural morphology calculation. The ZnO NS‐based artificial synapses are prepared at low temperature by a simple spin coating process. Combining various characterization techniques and data analysis, the weight transition process in artificial synapses is recognized, In addition, the typical synaptic plasticity and high recognition accuracy are realized and kept stable under a series of bending operations.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202209907</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Accuracy ; artificial synapses ; flexibilities ; Handwriting recognition ; Materials science ; Memristors ; Nanosheets ; Neuromorphic computing ; Polymethyl methacrylate ; Random noise ; Synapses ; Wearable technology ; Zinc oxide ; ZnO nanosheets</subject><ispartof>Advanced functional materials, 2022-12, Vol.32 (52), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3177-7be8d4d7c318082754b0fc3368087c8a8c4e8c67a6115dbc6ff0f1b638fb72413</citedby><cites>FETCH-LOGICAL-c3177-7be8d4d7c318082754b0fc3368087c8a8c4e8c67a6115dbc6ff0f1b638fb72413</cites><orcidid>0000-0001-7063-3100</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202209907$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202209907$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Wang, YiLong</creatorcontrib><creatorcontrib>Cao, Minghui</creatorcontrib><creatorcontrib>Bian, Jing</creatorcontrib><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Su, Jie</creatorcontrib><title>Flexible ZnO Nanosheet‐Based Artificial Synapses Prepared by Low‐Temperature Process for High Recognition Accuracy Neuromorphic Computing</title><title>Advanced functional materials</title><description>In neuromorphic computing networks, a flexible synaptic memristor with high recognition accuracy is highly desired. In this study, ZnO nanosheets (ZnO NS) embedded within a polymethyl methacrylate host material are used as the intermediate layer to prepare flexible synaptic memristor at a low‐temperature of 80 °C. The device shows excellent switching characteristics with low SET/RESET voltages (−0.4 V/0.4 V) and stable retention characteristic (104 s). By modulating the conductance continuously, the flexible synaptic memristor simulates typical synaptic plasticities, including excitation post‐synaptic current, paired‐pulse facilitation, and spike‐timing dependent plasticity. Especially, the neuromorphic system built from flexible ZnO NS‐based memristors achieves a high recognition accuracy up to 97.7% for handwriting digit. Under the influence of 5% Uniform noise and 5% Gaussian noise, recognition accuracies are maintained at 94.6% and 93.7%, respectively. These properties are well maintained even when bending 1000 times at a radius of 5 mm. The flexible ZnO NS‐based memristor shows great prospects in wearable devices and neural morphology calculation. The ZnO NS‐based artificial synapses are prepared at low temperature by a simple spin coating process. Combining various characterization techniques and data analysis, the weight transition process in artificial synapses is recognized, In addition, the typical synaptic plasticity and high recognition accuracy are realized and kept stable under a series of bending operations.</description><subject>Accuracy</subject><subject>artificial synapses</subject><subject>flexibilities</subject><subject>Handwriting recognition</subject><subject>Materials science</subject><subject>Memristors</subject><subject>Nanosheets</subject><subject>Neuromorphic computing</subject><subject>Polymethyl methacrylate</subject><subject>Random noise</subject><subject>Synapses</subject><subject>Wearable technology</subject><subject>Zinc oxide</subject><subject>ZnO nanosheets</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFUM9LwzAULqLgnF49BzxvJk3XtMc5nRPmJjpBvJQ0fdky2qYmLbM3_wHBv9G_xIzJPHp67-P78R6f550T3CcY-5c8k0Xfx76P4xizA69DQhL2KPajw_1OXo69E2vXGBPGaNDxPsc5vKs0B_RaztGMl9quAOrvj68rbiFDQ1MrqYTiOXpqS15ZsOjBQMWNI9MWTfXGaRdQVGB43RhwrBZgLZLaoIlartAjCL0sVa10iYZCNIaLFs2gMbrQplopgUa6qJpalctT70jy3MLZ7-x6z-ObxWjSm85v70bDaU9Q93ePpRBlQcYcinDks0GQYikoDR1iIuKRCCASIeMhIYMsFaGUWJI0pJFMmR8Q2vUudrmV0W8N2DpZ68aU7mTi0hihJKZbVX-nEkZba0AmlVEFN21CcLKtPNlWnuwrd4Z4Z9ioHNp_1Mnwenz_5_0BL1yJkw</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Wang, YiLong</creator><creator>Cao, Minghui</creator><creator>Bian, Jing</creator><creator>Li, Qiang</creator><creator>Su, Jie</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7063-3100</orcidid></search><sort><creationdate>20221201</creationdate><title>Flexible ZnO Nanosheet‐Based Artificial Synapses Prepared by Low‐Temperature Process for High Recognition Accuracy Neuromorphic Computing</title><author>Wang, YiLong ; Cao, Minghui ; Bian, Jing ; Li, Qiang ; Su, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3177-7be8d4d7c318082754b0fc3368087c8a8c4e8c67a6115dbc6ff0f1b638fb72413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>artificial synapses</topic><topic>flexibilities</topic><topic>Handwriting recognition</topic><topic>Materials science</topic><topic>Memristors</topic><topic>Nanosheets</topic><topic>Neuromorphic computing</topic><topic>Polymethyl methacrylate</topic><topic>Random noise</topic><topic>Synapses</topic><topic>Wearable technology</topic><topic>Zinc oxide</topic><topic>ZnO nanosheets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, YiLong</creatorcontrib><creatorcontrib>Cao, Minghui</creatorcontrib><creatorcontrib>Bian, Jing</creatorcontrib><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Su, Jie</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, YiLong</au><au>Cao, Minghui</au><au>Bian, Jing</au><au>Li, Qiang</au><au>Su, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flexible ZnO Nanosheet‐Based Artificial Synapses Prepared by Low‐Temperature Process for High Recognition Accuracy Neuromorphic Computing</atitle><jtitle>Advanced functional materials</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>32</volume><issue>52</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>In neuromorphic computing networks, a flexible synaptic memristor with high recognition accuracy is highly desired. In this study, ZnO nanosheets (ZnO NS) embedded within a polymethyl methacrylate host material are used as the intermediate layer to prepare flexible synaptic memristor at a low‐temperature of 80 °C. The device shows excellent switching characteristics with low SET/RESET voltages (−0.4 V/0.4 V) and stable retention characteristic (104 s). By modulating the conductance continuously, the flexible synaptic memristor simulates typical synaptic plasticities, including excitation post‐synaptic current, paired‐pulse facilitation, and spike‐timing dependent plasticity. Especially, the neuromorphic system built from flexible ZnO NS‐based memristors achieves a high recognition accuracy up to 97.7% for handwriting digit. Under the influence of 5% Uniform noise and 5% Gaussian noise, recognition accuracies are maintained at 94.6% and 93.7%, respectively. These properties are well maintained even when bending 1000 times at a radius of 5 mm. The flexible ZnO NS‐based memristor shows great prospects in wearable devices and neural morphology calculation. The ZnO NS‐based artificial synapses are prepared at low temperature by a simple spin coating process. Combining various characterization techniques and data analysis, the weight transition process in artificial synapses is recognized, In addition, the typical synaptic plasticity and high recognition accuracy are realized and kept stable under a series of bending operations.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202209907</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7063-3100</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2022-12, Vol.32 (52), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2757131931
source Wiley Journals
subjects Accuracy
artificial synapses
flexibilities
Handwriting recognition
Materials science
Memristors
Nanosheets
Neuromorphic computing
Polymethyl methacrylate
Random noise
Synapses
Wearable technology
Zinc oxide
ZnO nanosheets
title Flexible ZnO Nanosheet‐Based Artificial Synapses Prepared by Low‐Temperature Process for High Recognition Accuracy Neuromorphic Computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T09%3A06%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flexible%20ZnO%20Nanosheet%E2%80%90Based%20Artificial%20Synapses%20Prepared%20by%20Low%E2%80%90Temperature%20Process%20for%20High%20Recognition%20Accuracy%20Neuromorphic%20Computing&rft.jtitle=Advanced%20functional%20materials&rft.au=Wang,%20YiLong&rft.date=2022-12-01&rft.volume=32&rft.issue=52&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202209907&rft_dat=%3Cproquest_cross%3E2757131931%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2757131931&rft_id=info:pmid/&rfr_iscdi=true