Atomic Modulation and Structure Design of Fe−N4 Modified Hollow Carbon Fibers with Encapsulated Ni Nanoparticles for Rechargeable Zn–Air Batteries

Excellent bifunctional oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) activity and rapid mass transport capability are two important parameters of electrocatalysts for high‐performance rechargeable Zn–air batteries (ZABs). Herein, an efficient atomic modulation and structure design...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2022-12, Vol.32 (52), p.n/a
Hauptverfasser: Tian, Yuhui, Wu, Zhenzhen, Li, Meng, Sun, Qiang, Chen, Hao, Yuan, Ding, Deng, Daijie, Johannessen, Bernt, Wang, Yun, Zhong, Yulin, Xu, Li, Lu, Jun, Zhang, Shanqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 52
container_start_page
container_title Advanced functional materials
container_volume 32
creator Tian, Yuhui
Wu, Zhenzhen
Li, Meng
Sun, Qiang
Chen, Hao
Yuan, Ding
Deng, Daijie
Johannessen, Bernt
Wang, Yun
Zhong, Yulin
Xu, Li
Lu, Jun
Zhang, Shanqing
description Excellent bifunctional oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) activity and rapid mass transport capability are two important parameters of electrocatalysts for high‐performance rechargeable Zn–air batteries (ZABs). Herein, an efficient atomic modulation and structure design to promote bifunctional activity and mass transport kinetics of an ORR/OER electrocatalyst are reported. Specifically, atomic Fe−N4 moieties are immobilized on premade hollow carbon fibers with encapsulated Ni nanoparticles (Fe‐N@Ni‐HCFs). Synchrotron X‐ray absorption spectroscopy and spherical aberration‐corrected electron microscope analyses confirm the atomic distribution of the active sites and unique lung bubble‐like hollow architecture of the catalyst, while theoretical investigations reveal that the encapsulated Ni nanoparticles can induce electron distribution of the atomic Fe−N4 moieties to reduce reaction energy barriers. As a result, the prepared catalyst possesses enhanced bifunctional ORR/OER activity and well‐constructed gas–solid–liquid interfaces for improved mass transfer. These synergetic advantages endow the binder‐free Fe‐N@Ni‐HCFs electrode with the remarkable power density and cycling stability for ZABs, outperforming the commercial Pt/C+Ir/C benchmark. This exceptional performance suggests that the proposed strategy can be extended to the design and fabrication of electrocatalysts for energy conversion and storage. Atomic Fe−N4 moieties are immobilized onto lung‐bubble‐like hollow carbon fibers that encapsulate metallic Ni nanoparticles. The electronic coupling between the Fe−N4 moieties and Ni nanoparticles accelerates the oxygen reduction reaction/oxygen evolution reaction kinetics, while the porous hollow structure with inner cavities provides sufficient and stable triple‐phase interfaces to promote mass transfer. The atomic modulation and structure design synergistically boost the electrochemical performance of the assembled Zn–air batteries.
doi_str_mv 10.1002/adfm.202209273
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2757131379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2757131379</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2733-170bd24c9313e27250ba80ea8bebeea03aa2ed2ece2fe8f253b26b510732a91f3</originalsourceid><addsrcrecordid>eNo9kE1PwkAQhhujiYhePW_iGdwPYOkRgYoJYOJHYrw0s-0UlpRu3d2GcPPoWRN_IL_EEgynmUmeeSfzBME1o21GKb-FNFu3OeWchlyKk6DBeqzXEpT3T489ezsPLpxbUcqkFJ1G8DvwZq0TMjNplYPXpiBQpOTZ2yrxlUUyQqcXBTEZiXD39T3v7FGdaUzJxOS52ZAhWFWvRVqhdWSj_ZKMiwRKtw-ssbkmcyhMCdbrJEdHMmPJEyZLsAsElSN5L3afPwNtyR14j1ajuwzOMsgdXv3XZvAajV-Gk9b08f5hOJi2yvpF0WKSqpR3klAwgVzyLlXQpwh9hQoRqADgmHJMkGfYz3hXKN5TXUal4BCyTDSDm0Nuac1Hhc7HK1PZoj4Zc9mVrM6VYU2FB2qjc9zGpdVrsNuY0XgvPt6Lj4_i48Eomh0n8QenHn1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2757131379</pqid></control><display><type>article</type><title>Atomic Modulation and Structure Design of Fe−N4 Modified Hollow Carbon Fibers with Encapsulated Ni Nanoparticles for Rechargeable Zn–Air Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tian, Yuhui ; Wu, Zhenzhen ; Li, Meng ; Sun, Qiang ; Chen, Hao ; Yuan, Ding ; Deng, Daijie ; Johannessen, Bernt ; Wang, Yun ; Zhong, Yulin ; Xu, Li ; Lu, Jun ; Zhang, Shanqing</creator><creatorcontrib>Tian, Yuhui ; Wu, Zhenzhen ; Li, Meng ; Sun, Qiang ; Chen, Hao ; Yuan, Ding ; Deng, Daijie ; Johannessen, Bernt ; Wang, Yun ; Zhong, Yulin ; Xu, Li ; Lu, Jun ; Zhang, Shanqing</creatorcontrib><description>Excellent bifunctional oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) activity and rapid mass transport capability are two important parameters of electrocatalysts for high‐performance rechargeable Zn–air batteries (ZABs). Herein, an efficient atomic modulation and structure design to promote bifunctional activity and mass transport kinetics of an ORR/OER electrocatalyst are reported. Specifically, atomic Fe−N4 moieties are immobilized on premade hollow carbon fibers with encapsulated Ni nanoparticles (Fe‐N@Ni‐HCFs). Synchrotron X‐ray absorption spectroscopy and spherical aberration‐corrected electron microscope analyses confirm the atomic distribution of the active sites and unique lung bubble‐like hollow architecture of the catalyst, while theoretical investigations reveal that the encapsulated Ni nanoparticles can induce electron distribution of the atomic Fe−N4 moieties to reduce reaction energy barriers. As a result, the prepared catalyst possesses enhanced bifunctional ORR/OER activity and well‐constructed gas–solid–liquid interfaces for improved mass transfer. These synergetic advantages endow the binder‐free Fe‐N@Ni‐HCFs electrode with the remarkable power density and cycling stability for ZABs, outperforming the commercial Pt/C+Ir/C benchmark. This exceptional performance suggests that the proposed strategy can be extended to the design and fabrication of electrocatalysts for energy conversion and storage. Atomic Fe−N4 moieties are immobilized onto lung‐bubble‐like hollow carbon fibers that encapsulate metallic Ni nanoparticles. The electronic coupling between the Fe−N4 moieties and Ni nanoparticles accelerates the oxygen reduction reaction/oxygen evolution reaction kinetics, while the porous hollow structure with inner cavities provides sufficient and stable triple‐phase interfaces to promote mass transfer. The atomic modulation and structure design synergistically boost the electrochemical performance of the assembled Zn–air batteries.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202209273</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Absorption spectroscopy ; Atomic properties ; Atomic structure ; bifunctional oxygen electrocatalysts ; binder‐free electrodes ; Carbon fibers ; Catalysts ; Chemical reduction ; Electrocatalysts ; Electron distribution ; Encapsulation ; Energy conversion ; Energy storage ; Iridium ; Iron ; Liquid-solid interfaces ; Mass transfer ; Mass transport ; Materials science ; Metal air batteries ; Modulation ; Nanoparticles ; Nickel ; Oxygen evolution reactions ; Oxygen reduction reactions ; Rechargeable batteries ; rechargeable Zn–air batteries ; single‐atom catalysts ; Synchrotrons ; Zinc-oxygen batteries</subject><ispartof>Advanced functional materials, 2022-12, Vol.32 (52), p.n/a</ispartof><rights>2022 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0858-8577 ; 0000-0001-5192-1844</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202209273$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202209273$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Tian, Yuhui</creatorcontrib><creatorcontrib>Wu, Zhenzhen</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Sun, Qiang</creatorcontrib><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Yuan, Ding</creatorcontrib><creatorcontrib>Deng, Daijie</creatorcontrib><creatorcontrib>Johannessen, Bernt</creatorcontrib><creatorcontrib>Wang, Yun</creatorcontrib><creatorcontrib>Zhong, Yulin</creatorcontrib><creatorcontrib>Xu, Li</creatorcontrib><creatorcontrib>Lu, Jun</creatorcontrib><creatorcontrib>Zhang, Shanqing</creatorcontrib><title>Atomic Modulation and Structure Design of Fe−N4 Modified Hollow Carbon Fibers with Encapsulated Ni Nanoparticles for Rechargeable Zn–Air Batteries</title><title>Advanced functional materials</title><description>Excellent bifunctional oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) activity and rapid mass transport capability are two important parameters of electrocatalysts for high‐performance rechargeable Zn–air batteries (ZABs). Herein, an efficient atomic modulation and structure design to promote bifunctional activity and mass transport kinetics of an ORR/OER electrocatalyst are reported. Specifically, atomic Fe−N4 moieties are immobilized on premade hollow carbon fibers with encapsulated Ni nanoparticles (Fe‐N@Ni‐HCFs). Synchrotron X‐ray absorption spectroscopy and spherical aberration‐corrected electron microscope analyses confirm the atomic distribution of the active sites and unique lung bubble‐like hollow architecture of the catalyst, while theoretical investigations reveal that the encapsulated Ni nanoparticles can induce electron distribution of the atomic Fe−N4 moieties to reduce reaction energy barriers. As a result, the prepared catalyst possesses enhanced bifunctional ORR/OER activity and well‐constructed gas–solid–liquid interfaces for improved mass transfer. These synergetic advantages endow the binder‐free Fe‐N@Ni‐HCFs electrode with the remarkable power density and cycling stability for ZABs, outperforming the commercial Pt/C+Ir/C benchmark. This exceptional performance suggests that the proposed strategy can be extended to the design and fabrication of electrocatalysts for energy conversion and storage. Atomic Fe−N4 moieties are immobilized onto lung‐bubble‐like hollow carbon fibers that encapsulate metallic Ni nanoparticles. The electronic coupling between the Fe−N4 moieties and Ni nanoparticles accelerates the oxygen reduction reaction/oxygen evolution reaction kinetics, while the porous hollow structure with inner cavities provides sufficient and stable triple‐phase interfaces to promote mass transfer. The atomic modulation and structure design synergistically boost the electrochemical performance of the assembled Zn–air batteries.</description><subject>Absorption spectroscopy</subject><subject>Atomic properties</subject><subject>Atomic structure</subject><subject>bifunctional oxygen electrocatalysts</subject><subject>binder‐free electrodes</subject><subject>Carbon fibers</subject><subject>Catalysts</subject><subject>Chemical reduction</subject><subject>Electrocatalysts</subject><subject>Electron distribution</subject><subject>Encapsulation</subject><subject>Energy conversion</subject><subject>Energy storage</subject><subject>Iridium</subject><subject>Iron</subject><subject>Liquid-solid interfaces</subject><subject>Mass transfer</subject><subject>Mass transport</subject><subject>Materials science</subject><subject>Metal air batteries</subject><subject>Modulation</subject><subject>Nanoparticles</subject><subject>Nickel</subject><subject>Oxygen evolution reactions</subject><subject>Oxygen reduction reactions</subject><subject>Rechargeable batteries</subject><subject>rechargeable Zn–air batteries</subject><subject>single‐atom catalysts</subject><subject>Synchrotrons</subject><subject>Zinc-oxygen batteries</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNo9kE1PwkAQhhujiYhePW_iGdwPYOkRgYoJYOJHYrw0s-0UlpRu3d2GcPPoWRN_IL_EEgynmUmeeSfzBME1o21GKb-FNFu3OeWchlyKk6DBeqzXEpT3T489ezsPLpxbUcqkFJ1G8DvwZq0TMjNplYPXpiBQpOTZ2yrxlUUyQqcXBTEZiXD39T3v7FGdaUzJxOS52ZAhWFWvRVqhdWSj_ZKMiwRKtw-ssbkmcyhMCdbrJEdHMmPJEyZLsAsElSN5L3afPwNtyR14j1ajuwzOMsgdXv3XZvAajV-Gk9b08f5hOJi2yvpF0WKSqpR3klAwgVzyLlXQpwh9hQoRqADgmHJMkGfYz3hXKN5TXUal4BCyTDSDm0Nuac1Hhc7HK1PZoj4Zc9mVrM6VYU2FB2qjc9zGpdVrsNuY0XgvPt6Lj4_i48Eomh0n8QenHn1w</recordid><startdate>20221222</startdate><enddate>20221222</enddate><creator>Tian, Yuhui</creator><creator>Wu, Zhenzhen</creator><creator>Li, Meng</creator><creator>Sun, Qiang</creator><creator>Chen, Hao</creator><creator>Yuan, Ding</creator><creator>Deng, Daijie</creator><creator>Johannessen, Bernt</creator><creator>Wang, Yun</creator><creator>Zhong, Yulin</creator><creator>Xu, Li</creator><creator>Lu, Jun</creator><creator>Zhang, Shanqing</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0858-8577</orcidid><orcidid>https://orcid.org/0000-0001-5192-1844</orcidid></search><sort><creationdate>20221222</creationdate><title>Atomic Modulation and Structure Design of Fe−N4 Modified Hollow Carbon Fibers with Encapsulated Ni Nanoparticles for Rechargeable Zn–Air Batteries</title><author>Tian, Yuhui ; Wu, Zhenzhen ; Li, Meng ; Sun, Qiang ; Chen, Hao ; Yuan, Ding ; Deng, Daijie ; Johannessen, Bernt ; Wang, Yun ; Zhong, Yulin ; Xu, Li ; Lu, Jun ; Zhang, Shanqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2733-170bd24c9313e27250ba80ea8bebeea03aa2ed2ece2fe8f253b26b510732a91f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Absorption spectroscopy</topic><topic>Atomic properties</topic><topic>Atomic structure</topic><topic>bifunctional oxygen electrocatalysts</topic><topic>binder‐free electrodes</topic><topic>Carbon fibers</topic><topic>Catalysts</topic><topic>Chemical reduction</topic><topic>Electrocatalysts</topic><topic>Electron distribution</topic><topic>Encapsulation</topic><topic>Energy conversion</topic><topic>Energy storage</topic><topic>Iridium</topic><topic>Iron</topic><topic>Liquid-solid interfaces</topic><topic>Mass transfer</topic><topic>Mass transport</topic><topic>Materials science</topic><topic>Metal air batteries</topic><topic>Modulation</topic><topic>Nanoparticles</topic><topic>Nickel</topic><topic>Oxygen evolution reactions</topic><topic>Oxygen reduction reactions</topic><topic>Rechargeable batteries</topic><topic>rechargeable Zn–air batteries</topic><topic>single‐atom catalysts</topic><topic>Synchrotrons</topic><topic>Zinc-oxygen batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Yuhui</creatorcontrib><creatorcontrib>Wu, Zhenzhen</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Sun, Qiang</creatorcontrib><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Yuan, Ding</creatorcontrib><creatorcontrib>Deng, Daijie</creatorcontrib><creatorcontrib>Johannessen, Bernt</creatorcontrib><creatorcontrib>Wang, Yun</creatorcontrib><creatorcontrib>Zhong, Yulin</creatorcontrib><creatorcontrib>Xu, Li</creatorcontrib><creatorcontrib>Lu, Jun</creatorcontrib><creatorcontrib>Zhang, Shanqing</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Yuhui</au><au>Wu, Zhenzhen</au><au>Li, Meng</au><au>Sun, Qiang</au><au>Chen, Hao</au><au>Yuan, Ding</au><au>Deng, Daijie</au><au>Johannessen, Bernt</au><au>Wang, Yun</au><au>Zhong, Yulin</au><au>Xu, Li</au><au>Lu, Jun</au><au>Zhang, Shanqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic Modulation and Structure Design of Fe−N4 Modified Hollow Carbon Fibers with Encapsulated Ni Nanoparticles for Rechargeable Zn–Air Batteries</atitle><jtitle>Advanced functional materials</jtitle><date>2022-12-22</date><risdate>2022</risdate><volume>32</volume><issue>52</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Excellent bifunctional oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) activity and rapid mass transport capability are two important parameters of electrocatalysts for high‐performance rechargeable Zn–air batteries (ZABs). Herein, an efficient atomic modulation and structure design to promote bifunctional activity and mass transport kinetics of an ORR/OER electrocatalyst are reported. Specifically, atomic Fe−N4 moieties are immobilized on premade hollow carbon fibers with encapsulated Ni nanoparticles (Fe‐N@Ni‐HCFs). Synchrotron X‐ray absorption spectroscopy and spherical aberration‐corrected electron microscope analyses confirm the atomic distribution of the active sites and unique lung bubble‐like hollow architecture of the catalyst, while theoretical investigations reveal that the encapsulated Ni nanoparticles can induce electron distribution of the atomic Fe−N4 moieties to reduce reaction energy barriers. As a result, the prepared catalyst possesses enhanced bifunctional ORR/OER activity and well‐constructed gas–solid–liquid interfaces for improved mass transfer. These synergetic advantages endow the binder‐free Fe‐N@Ni‐HCFs electrode with the remarkable power density and cycling stability for ZABs, outperforming the commercial Pt/C+Ir/C benchmark. This exceptional performance suggests that the proposed strategy can be extended to the design and fabrication of electrocatalysts for energy conversion and storage. Atomic Fe−N4 moieties are immobilized onto lung‐bubble‐like hollow carbon fibers that encapsulate metallic Ni nanoparticles. The electronic coupling between the Fe−N4 moieties and Ni nanoparticles accelerates the oxygen reduction reaction/oxygen evolution reaction kinetics, while the porous hollow structure with inner cavities provides sufficient and stable triple‐phase interfaces to promote mass transfer. The atomic modulation and structure design synergistically boost the electrochemical performance of the assembled Zn–air batteries.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202209273</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0858-8577</orcidid><orcidid>https://orcid.org/0000-0001-5192-1844</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2022-12, Vol.32 (52), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2757131379
source Wiley Online Library Journals Frontfile Complete
subjects Absorption spectroscopy
Atomic properties
Atomic structure
bifunctional oxygen electrocatalysts
binder‐free electrodes
Carbon fibers
Catalysts
Chemical reduction
Electrocatalysts
Electron distribution
Encapsulation
Energy conversion
Energy storage
Iridium
Iron
Liquid-solid interfaces
Mass transfer
Mass transport
Materials science
Metal air batteries
Modulation
Nanoparticles
Nickel
Oxygen evolution reactions
Oxygen reduction reactions
Rechargeable batteries
rechargeable Zn–air batteries
single‐atom catalysts
Synchrotrons
Zinc-oxygen batteries
title Atomic Modulation and Structure Design of Fe−N4 Modified Hollow Carbon Fibers with Encapsulated Ni Nanoparticles for Rechargeable Zn–Air Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T18%3A00%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic%20Modulation%20and%20Structure%20Design%20of%20Fe%E2%88%92N4%20Modified%20Hollow%20Carbon%20Fibers%20with%20Encapsulated%20Ni%20Nanoparticles%20for%20Rechargeable%20Zn%E2%80%93Air%20Batteries&rft.jtitle=Advanced%20functional%20materials&rft.au=Tian,%20Yuhui&rft.date=2022-12-22&rft.volume=32&rft.issue=52&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202209273&rft_dat=%3Cproquest_wiley%3E2757131379%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2757131379&rft_id=info:pmid/&rfr_iscdi=true