Scalable Hybrid Learning Techniques for Scientific Data Compression

Data compression is becoming critical for storing scientific data because many scientific applications need to store large amounts of data and post process this data for scientific discovery. Unlike image and video compression algorithms that limit errors to primary data, scientists require compress...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-12
Hauptverfasser: Banerjee, Tania, Choi, Jong, Lee, Jaemoon, Gong, Qian, Chen, Jieyang, Klasky, Scott, Rangarajan, Anand, Ranka, Sanjay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Banerjee, Tania
Choi, Jong
Lee, Jaemoon
Gong, Qian
Chen, Jieyang
Klasky, Scott
Rangarajan, Anand
Ranka, Sanjay
description Data compression is becoming critical for storing scientific data because many scientific applications need to store large amounts of data and post process this data for scientific discovery. Unlike image and video compression algorithms that limit errors to primary data, scientists require compression techniques that accurately preserve derived quantities of interest (QoIs). This paper presents a physics-informed compression technique implemented as an end-to-end, scalable, GPU-based pipeline for data compression that addresses this requirement. Our hybrid compression technique combines machine learning techniques and standard compression methods. Specifically, we combine an autoencoder, an error-bounded lossy compressor to provide guarantees on raw data error, and a constraint satisfaction post-processing step to preserve the QoIs within a minimal error (generally less than floating point error). The effectiveness of the data compression pipeline is demonstrated by compressing nuclear fusion simulation data generated by a large-scale fusion code, XGC, which produces hundreds of terabytes of data in a single day. Our approach works within the ADIOS framework and results in compression by a factor of more than 150 while requiring only a few percent of the computational resources necessary for generating the data, making the overall approach highly effective for practical scenarios.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2756879369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2756879369</sourcerecordid><originalsourceid>FETCH-proquest_journals_27568793693</originalsourceid><addsrcrecordid>eNqNi7sOgjAUQBsTE4nyDzdxJsGW8phRw-AGOyn1opdgiy0M_r2a-AFOZzjnrFjAhThEecL5hoXeD3Ec8zTjUoqAlbVWo-pGhOrVObrCBZUzZG7QoL4bei7oobcOak1oZupJw1HNCkr7mBx6T9bs2LpXo8fwxy3bn09NWUWTs99_bge7OPNRLc9kmmeFSAvxX_UG6IE6Og</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756879369</pqid></control><display><type>article</type><title>Scalable Hybrid Learning Techniques for Scientific Data Compression</title><source>Free E- Journals</source><creator>Banerjee, Tania ; Choi, Jong ; Lee, Jaemoon ; Gong, Qian ; Chen, Jieyang ; Klasky, Scott ; Rangarajan, Anand ; Ranka, Sanjay</creator><creatorcontrib>Banerjee, Tania ; Choi, Jong ; Lee, Jaemoon ; Gong, Qian ; Chen, Jieyang ; Klasky, Scott ; Rangarajan, Anand ; Ranka, Sanjay</creatorcontrib><description>Data compression is becoming critical for storing scientific data because many scientific applications need to store large amounts of data and post process this data for scientific discovery. Unlike image and video compression algorithms that limit errors to primary data, scientists require compression techniques that accurately preserve derived quantities of interest (QoIs). This paper presents a physics-informed compression technique implemented as an end-to-end, scalable, GPU-based pipeline for data compression that addresses this requirement. Our hybrid compression technique combines machine learning techniques and standard compression methods. Specifically, we combine an autoencoder, an error-bounded lossy compressor to provide guarantees on raw data error, and a constraint satisfaction post-processing step to preserve the QoIs within a minimal error (generally less than floating point error). The effectiveness of the data compression pipeline is demonstrated by compressing nuclear fusion simulation data generated by a large-scale fusion code, XGC, which produces hundreds of terabytes of data in a single day. Our approach works within the ADIOS framework and results in compression by a factor of more than 150 while requiring only a few percent of the computational resources necessary for generating the data, making the overall approach highly effective for practical scenarios.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Data compression ; Errors ; Floating point arithmetic ; Image compression ; Machine learning ; Nuclear fusion ; Video compression</subject><ispartof>arXiv.org, 2022-12</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Banerjee, Tania</creatorcontrib><creatorcontrib>Choi, Jong</creatorcontrib><creatorcontrib>Lee, Jaemoon</creatorcontrib><creatorcontrib>Gong, Qian</creatorcontrib><creatorcontrib>Chen, Jieyang</creatorcontrib><creatorcontrib>Klasky, Scott</creatorcontrib><creatorcontrib>Rangarajan, Anand</creatorcontrib><creatorcontrib>Ranka, Sanjay</creatorcontrib><title>Scalable Hybrid Learning Techniques for Scientific Data Compression</title><title>arXiv.org</title><description>Data compression is becoming critical for storing scientific data because many scientific applications need to store large amounts of data and post process this data for scientific discovery. Unlike image and video compression algorithms that limit errors to primary data, scientists require compression techniques that accurately preserve derived quantities of interest (QoIs). This paper presents a physics-informed compression technique implemented as an end-to-end, scalable, GPU-based pipeline for data compression that addresses this requirement. Our hybrid compression technique combines machine learning techniques and standard compression methods. Specifically, we combine an autoencoder, an error-bounded lossy compressor to provide guarantees on raw data error, and a constraint satisfaction post-processing step to preserve the QoIs within a minimal error (generally less than floating point error). The effectiveness of the data compression pipeline is demonstrated by compressing nuclear fusion simulation data generated by a large-scale fusion code, XGC, which produces hundreds of terabytes of data in a single day. Our approach works within the ADIOS framework and results in compression by a factor of more than 150 while requiring only a few percent of the computational resources necessary for generating the data, making the overall approach highly effective for practical scenarios.</description><subject>Algorithms</subject><subject>Data compression</subject><subject>Errors</subject><subject>Floating point arithmetic</subject><subject>Image compression</subject><subject>Machine learning</subject><subject>Nuclear fusion</subject><subject>Video compression</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi7sOgjAUQBsTE4nyDzdxJsGW8phRw-AGOyn1opdgiy0M_r2a-AFOZzjnrFjAhThEecL5hoXeD3Ec8zTjUoqAlbVWo-pGhOrVObrCBZUzZG7QoL4bei7oobcOak1oZupJw1HNCkr7mBx6T9bs2LpXo8fwxy3bn09NWUWTs99_bge7OPNRLc9kmmeFSAvxX_UG6IE6Og</recordid><startdate>20221221</startdate><enddate>20221221</enddate><creator>Banerjee, Tania</creator><creator>Choi, Jong</creator><creator>Lee, Jaemoon</creator><creator>Gong, Qian</creator><creator>Chen, Jieyang</creator><creator>Klasky, Scott</creator><creator>Rangarajan, Anand</creator><creator>Ranka, Sanjay</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221221</creationdate><title>Scalable Hybrid Learning Techniques for Scientific Data Compression</title><author>Banerjee, Tania ; Choi, Jong ; Lee, Jaemoon ; Gong, Qian ; Chen, Jieyang ; Klasky, Scott ; Rangarajan, Anand ; Ranka, Sanjay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27568793693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Data compression</topic><topic>Errors</topic><topic>Floating point arithmetic</topic><topic>Image compression</topic><topic>Machine learning</topic><topic>Nuclear fusion</topic><topic>Video compression</topic><toplevel>online_resources</toplevel><creatorcontrib>Banerjee, Tania</creatorcontrib><creatorcontrib>Choi, Jong</creatorcontrib><creatorcontrib>Lee, Jaemoon</creatorcontrib><creatorcontrib>Gong, Qian</creatorcontrib><creatorcontrib>Chen, Jieyang</creatorcontrib><creatorcontrib>Klasky, Scott</creatorcontrib><creatorcontrib>Rangarajan, Anand</creatorcontrib><creatorcontrib>Ranka, Sanjay</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banerjee, Tania</au><au>Choi, Jong</au><au>Lee, Jaemoon</au><au>Gong, Qian</au><au>Chen, Jieyang</au><au>Klasky, Scott</au><au>Rangarajan, Anand</au><au>Ranka, Sanjay</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Scalable Hybrid Learning Techniques for Scientific Data Compression</atitle><jtitle>arXiv.org</jtitle><date>2022-12-21</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Data compression is becoming critical for storing scientific data because many scientific applications need to store large amounts of data and post process this data for scientific discovery. Unlike image and video compression algorithms that limit errors to primary data, scientists require compression techniques that accurately preserve derived quantities of interest (QoIs). This paper presents a physics-informed compression technique implemented as an end-to-end, scalable, GPU-based pipeline for data compression that addresses this requirement. Our hybrid compression technique combines machine learning techniques and standard compression methods. Specifically, we combine an autoencoder, an error-bounded lossy compressor to provide guarantees on raw data error, and a constraint satisfaction post-processing step to preserve the QoIs within a minimal error (generally less than floating point error). The effectiveness of the data compression pipeline is demonstrated by compressing nuclear fusion simulation data generated by a large-scale fusion code, XGC, which produces hundreds of terabytes of data in a single day. Our approach works within the ADIOS framework and results in compression by a factor of more than 150 while requiring only a few percent of the computational resources necessary for generating the data, making the overall approach highly effective for practical scenarios.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2756879369
source Free E- Journals
subjects Algorithms
Data compression
Errors
Floating point arithmetic
Image compression
Machine learning
Nuclear fusion
Video compression
title Scalable Hybrid Learning Techniques for Scientific Data Compression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A01%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Scalable%20Hybrid%20Learning%20Techniques%20for%20Scientific%20Data%20Compression&rft.jtitle=arXiv.org&rft.au=Banerjee,%20Tania&rft.date=2022-12-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2756879369%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2756879369&rft_id=info:pmid/&rfr_iscdi=true