Large area optimization of meta-lens via data-free machine learning
Sub-wavelength diffractive optics meta-optics present a multi-scale optical system, where the behavior of constituent sub-wavelength scatterers, or meta-atoms, need to be modelled by full-wave electromagnetic simulations, whereas the whole meta-optical system can be modelled using ray/ wave optics....
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-12 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Zhelyeznyakov, Maksym V Froch, Johannes E Wirth-Singh, Anna Noh, Jaebum Rho, Junsuk Brunton, Steven L Majumdar, Arka |
description | Sub-wavelength diffractive optics meta-optics present a multi-scale optical system, where the behavior of constituent sub-wavelength scatterers, or meta-atoms, need to be modelled by full-wave electromagnetic simulations, whereas the whole meta-optical system can be modelled using ray/ wave optics. Current simulation techniques for large-scale meta-optics rely on the local phase approximation (LPA), where the coupling between dissimilar meta-atoms are completely neglected. Here we introduce a physics-informed neural network, which can efficiently model the meta-optics while still incorporating all of the coupling between meta-atoms. Unlike existing deep learning techniques which generally predict the mean transmission and reflection coefficients of meta-atoms, we predict the full electro-magnetic field distribution. We demonstrate the efficacy of our technique by designing 1mm aperture cylindrical meta-lenses exhibiting higher efficiency than the ones designed under LPA. We experimentally validated the maximum intensity improvement (up to \(53\%\)) of the inverse-designed meta-lens. Our reported method can design large aperture \((\sim 10^4-10^5\lambda)\) meta-optics in a reasonable time (approximately 15 minutes on a graphics processing unit) without relying on any approximation. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2756876852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2756876852</sourcerecordid><originalsourceid>FETCH-proquest_journals_27568768523</originalsourceid><addsrcrecordid>eNqNirEKwjAUAIMgWLT_8MC5UF9M070oDo7u5aGvNaVJapI6-PV28AOcjuNuJTKU8lDUR8SNyGMcyrLESqNSMhPNlULPQIEJ_JSMNR9KxjvwHVhOVIzsIrwNwYMW6wIzWLo_jWMYmYIzrt-JdUdj5PzHrdifT7fmUkzBv2aOqR38HNySWtSqqnVVK5T_XV_eRDoM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756876852</pqid></control><display><type>article</type><title>Large area optimization of meta-lens via data-free machine learning</title><source>Free E- Journals</source><creator>Zhelyeznyakov, Maksym V ; Froch, Johannes E ; Wirth-Singh, Anna ; Noh, Jaebum ; Rho, Junsuk ; Brunton, Steven L ; Majumdar, Arka</creator><creatorcontrib>Zhelyeznyakov, Maksym V ; Froch, Johannes E ; Wirth-Singh, Anna ; Noh, Jaebum ; Rho, Junsuk ; Brunton, Steven L ; Majumdar, Arka</creatorcontrib><description>Sub-wavelength diffractive optics meta-optics present a multi-scale optical system, where the behavior of constituent sub-wavelength scatterers, or meta-atoms, need to be modelled by full-wave electromagnetic simulations, whereas the whole meta-optical system can be modelled using ray/ wave optics. Current simulation techniques for large-scale meta-optics rely on the local phase approximation (LPA), where the coupling between dissimilar meta-atoms are completely neglected. Here we introduce a physics-informed neural network, which can efficiently model the meta-optics while still incorporating all of the coupling between meta-atoms. Unlike existing deep learning techniques which generally predict the mean transmission and reflection coefficients of meta-atoms, we predict the full electro-magnetic field distribution. We demonstrate the efficacy of our technique by designing 1mm aperture cylindrical meta-lenses exhibiting higher efficiency than the ones designed under LPA. We experimentally validated the maximum intensity improvement (up to \(53\%\)) of the inverse-designed meta-lens. Our reported method can design large aperture \((\sim 10^4-10^5\lambda)\) meta-optics in a reasonable time (approximately 15 minutes on a graphics processing unit) without relying on any approximation.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Apertures ; Approximation ; Coupling ; Deep learning ; Diffractive optics ; Graphics processing units ; Machine learning ; Magnetic lenses ; Neural networks ; Optics ; Optimization</subject><ispartof>arXiv.org, 2022-12</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Zhelyeznyakov, Maksym V</creatorcontrib><creatorcontrib>Froch, Johannes E</creatorcontrib><creatorcontrib>Wirth-Singh, Anna</creatorcontrib><creatorcontrib>Noh, Jaebum</creatorcontrib><creatorcontrib>Rho, Junsuk</creatorcontrib><creatorcontrib>Brunton, Steven L</creatorcontrib><creatorcontrib>Majumdar, Arka</creatorcontrib><title>Large area optimization of meta-lens via data-free machine learning</title><title>arXiv.org</title><description>Sub-wavelength diffractive optics meta-optics present a multi-scale optical system, where the behavior of constituent sub-wavelength scatterers, or meta-atoms, need to be modelled by full-wave electromagnetic simulations, whereas the whole meta-optical system can be modelled using ray/ wave optics. Current simulation techniques for large-scale meta-optics rely on the local phase approximation (LPA), where the coupling between dissimilar meta-atoms are completely neglected. Here we introduce a physics-informed neural network, which can efficiently model the meta-optics while still incorporating all of the coupling between meta-atoms. Unlike existing deep learning techniques which generally predict the mean transmission and reflection coefficients of meta-atoms, we predict the full electro-magnetic field distribution. We demonstrate the efficacy of our technique by designing 1mm aperture cylindrical meta-lenses exhibiting higher efficiency than the ones designed under LPA. We experimentally validated the maximum intensity improvement (up to \(53\%\)) of the inverse-designed meta-lens. Our reported method can design large aperture \((\sim 10^4-10^5\lambda)\) meta-optics in a reasonable time (approximately 15 minutes on a graphics processing unit) without relying on any approximation.</description><subject>Apertures</subject><subject>Approximation</subject><subject>Coupling</subject><subject>Deep learning</subject><subject>Diffractive optics</subject><subject>Graphics processing units</subject><subject>Machine learning</subject><subject>Magnetic lenses</subject><subject>Neural networks</subject><subject>Optics</subject><subject>Optimization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNirEKwjAUAIMgWLT_8MC5UF9M070oDo7u5aGvNaVJapI6-PV28AOcjuNuJTKU8lDUR8SNyGMcyrLESqNSMhPNlULPQIEJ_JSMNR9KxjvwHVhOVIzsIrwNwYMW6wIzWLo_jWMYmYIzrt-JdUdj5PzHrdifT7fmUkzBv2aOqR38HNySWtSqqnVVK5T_XV_eRDoM</recordid><startdate>20221221</startdate><enddate>20221221</enddate><creator>Zhelyeznyakov, Maksym V</creator><creator>Froch, Johannes E</creator><creator>Wirth-Singh, Anna</creator><creator>Noh, Jaebum</creator><creator>Rho, Junsuk</creator><creator>Brunton, Steven L</creator><creator>Majumdar, Arka</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221221</creationdate><title>Large area optimization of meta-lens via data-free machine learning</title><author>Zhelyeznyakov, Maksym V ; Froch, Johannes E ; Wirth-Singh, Anna ; Noh, Jaebum ; Rho, Junsuk ; Brunton, Steven L ; Majumdar, Arka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27568768523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Apertures</topic><topic>Approximation</topic><topic>Coupling</topic><topic>Deep learning</topic><topic>Diffractive optics</topic><topic>Graphics processing units</topic><topic>Machine learning</topic><topic>Magnetic lenses</topic><topic>Neural networks</topic><topic>Optics</topic><topic>Optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhelyeznyakov, Maksym V</creatorcontrib><creatorcontrib>Froch, Johannes E</creatorcontrib><creatorcontrib>Wirth-Singh, Anna</creatorcontrib><creatorcontrib>Noh, Jaebum</creatorcontrib><creatorcontrib>Rho, Junsuk</creatorcontrib><creatorcontrib>Brunton, Steven L</creatorcontrib><creatorcontrib>Majumdar, Arka</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhelyeznyakov, Maksym V</au><au>Froch, Johannes E</au><au>Wirth-Singh, Anna</au><au>Noh, Jaebum</au><au>Rho, Junsuk</au><au>Brunton, Steven L</au><au>Majumdar, Arka</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Large area optimization of meta-lens via data-free machine learning</atitle><jtitle>arXiv.org</jtitle><date>2022-12-21</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Sub-wavelength diffractive optics meta-optics present a multi-scale optical system, where the behavior of constituent sub-wavelength scatterers, or meta-atoms, need to be modelled by full-wave electromagnetic simulations, whereas the whole meta-optical system can be modelled using ray/ wave optics. Current simulation techniques for large-scale meta-optics rely on the local phase approximation (LPA), where the coupling between dissimilar meta-atoms are completely neglected. Here we introduce a physics-informed neural network, which can efficiently model the meta-optics while still incorporating all of the coupling between meta-atoms. Unlike existing deep learning techniques which generally predict the mean transmission and reflection coefficients of meta-atoms, we predict the full electro-magnetic field distribution. We demonstrate the efficacy of our technique by designing 1mm aperture cylindrical meta-lenses exhibiting higher efficiency than the ones designed under LPA. We experimentally validated the maximum intensity improvement (up to \(53\%\)) of the inverse-designed meta-lens. Our reported method can design large aperture \((\sim 10^4-10^5\lambda)\) meta-optics in a reasonable time (approximately 15 minutes on a graphics processing unit) without relying on any approximation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2756876852 |
source | Free E- Journals |
subjects | Apertures Approximation Coupling Deep learning Diffractive optics Graphics processing units Machine learning Magnetic lenses Neural networks Optics Optimization |
title | Large area optimization of meta-lens via data-free machine learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T15%3A47%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Large%20area%20optimization%20of%20meta-lens%20via%20data-free%20machine%20learning&rft.jtitle=arXiv.org&rft.au=Zhelyeznyakov,%20Maksym%20V&rft.date=2022-12-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2756876852%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2756876852&rft_id=info:pmid/&rfr_iscdi=true |