Risk measures-based cluster methods for finance
This paper performs an extensive comparison of cluster techniques for financial applications based on risk measures and returns as classification variables. We consider the cluster techniques and risk measures largely used in the literature. For the analysis, we use a database composed of daily retu...
Gespeichert in:
Veröffentlicht in: | Risk management (Leicestershire, England) England), 2023-03, Vol.25 (1), p.1-56, Article 4 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 56 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Risk management (Leicestershire, England) |
container_volume | 25 |
creator | Guedes, Pablo Cristini Müller, Fernanda Maria Righi, Marcelo Brutti |
description | This paper performs an extensive comparison of cluster techniques for financial applications based on risk measures and returns as classification variables. We consider the cluster techniques and risk measures largely used in the literature. For the analysis, we use a database composed of daily returns of the U.S. equity market. As for financial applications, we consider capital determination, portfolio optimization, and asset pricing. We found that the number of clusters varies over the years. The years with the fewest clusters coincide with periods of instability, such as 2008 (Subprime Crisis) and 2015 (slowdown in United States domestic product). Overall, we observe that our data support the superiority of the Fanny and MC approaches. By construction, both techniques are more robust to the distinct probabilistic distribution of data, which is typically the case for financial data. Furthermore, our results highlight the practical utility of considering risk measures and returns as classification variables in financial applications. |
doi_str_mv | 10.1057/s41283-022-00110-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2756867812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2756867812</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-d9a80c1d4720ab55c5f9ce5c9f10a50f31ec21df0aefc01557e69a5f1b129fb13</originalsourceid><addsrcrecordid>eNp9kEtLAzEQx4MoWKtfwNOC59iZZPM6SvEFBUH0HLLZRLe2uzXpHvz2RlfozdMMM_8H_Ai5RLhGEGqRa2SaU2CMAiAChSMyQ1VzWkuujsteS6BcGXNKznJeAwgpJc7I4rnLH9U2uDymkGnjcmgrvxnzPqRy3r8Pba7ikKrY9a734ZycRLfJ4eJvzsnr3e3L8oGunu4flzcr6rnWe9oap8FjWysGrhHCi2h8EN5EBCcgcgyeYRvBhegBhVBBGiciNshMbJDPydWUu0vD5xjy3q6HMfWl0jIlpJZKIysqNql8GnJOIdpd6rYufVkE-wPGTmBsAWN_wVgopmoyBT_0XT5YNGdciwKmSPgkyeXZv4V0aP8n-BuGu2-I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756867812</pqid></control><display><type>article</type><title>Risk measures-based cluster methods for finance</title><source>Springer Nature - Complete Springer Journals</source><creator>Guedes, Pablo Cristini ; Müller, Fernanda Maria ; Righi, Marcelo Brutti</creator><creatorcontrib>Guedes, Pablo Cristini ; Müller, Fernanda Maria ; Righi, Marcelo Brutti</creatorcontrib><description>This paper performs an extensive comparison of cluster techniques for financial applications based on risk measures and returns as classification variables. We consider the cluster techniques and risk measures largely used in the literature. For the analysis, we use a database composed of daily returns of the U.S. equity market. As for financial applications, we consider capital determination, portfolio optimization, and asset pricing. We found that the number of clusters varies over the years. The years with the fewest clusters coincide with periods of instability, such as 2008 (Subprime Crisis) and 2015 (slowdown in United States domestic product). Overall, we observe that our data support the superiority of the Fanny and MC approaches. By construction, both techniques are more robust to the distinct probabilistic distribution of data, which is typically the case for financial data. Furthermore, our results highlight the practical utility of considering risk measures and returns as classification variables in financial applications.</description><identifier>ISSN: 1460-3799</identifier><identifier>EISSN: 1743-4637</identifier><identifier>DOI: 10.1057/s41283-022-00110-0</identifier><language>eng</language><publisher>London: Palgrave Macmillan UK</publisher><subject>Application ; Asset pricing ; Capital ; Classification ; Cluster analysis ; Clusters ; Decision making ; Economics and Finance ; Finance ; Optimization ; Original Article ; Risk ; Risk Management ; Securities markets ; Variables</subject><ispartof>Risk management (Leicestershire, England), 2023-03, Vol.25 (1), p.1-56, Article 4</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-d9a80c1d4720ab55c5f9ce5c9f10a50f31ec21df0aefc01557e69a5f1b129fb13</citedby><cites>FETCH-LOGICAL-c388t-d9a80c1d4720ab55c5f9ce5c9f10a50f31ec21df0aefc01557e69a5f1b129fb13</cites><orcidid>0000-0002-8276-7197</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1057/s41283-022-00110-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1057/s41283-022-00110-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Guedes, Pablo Cristini</creatorcontrib><creatorcontrib>Müller, Fernanda Maria</creatorcontrib><creatorcontrib>Righi, Marcelo Brutti</creatorcontrib><title>Risk measures-based cluster methods for finance</title><title>Risk management (Leicestershire, England)</title><addtitle>Risk Manag</addtitle><description>This paper performs an extensive comparison of cluster techniques for financial applications based on risk measures and returns as classification variables. We consider the cluster techniques and risk measures largely used in the literature. For the analysis, we use a database composed of daily returns of the U.S. equity market. As for financial applications, we consider capital determination, portfolio optimization, and asset pricing. We found that the number of clusters varies over the years. The years with the fewest clusters coincide with periods of instability, such as 2008 (Subprime Crisis) and 2015 (slowdown in United States domestic product). Overall, we observe that our data support the superiority of the Fanny and MC approaches. By construction, both techniques are more robust to the distinct probabilistic distribution of data, which is typically the case for financial data. Furthermore, our results highlight the practical utility of considering risk measures and returns as classification variables in financial applications.</description><subject>Application</subject><subject>Asset pricing</subject><subject>Capital</subject><subject>Classification</subject><subject>Cluster analysis</subject><subject>Clusters</subject><subject>Decision making</subject><subject>Economics and Finance</subject><subject>Finance</subject><subject>Optimization</subject><subject>Original Article</subject><subject>Risk</subject><subject>Risk Management</subject><subject>Securities markets</subject><subject>Variables</subject><issn>1460-3799</issn><issn>1743-4637</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEtLAzEQx4MoWKtfwNOC59iZZPM6SvEFBUH0HLLZRLe2uzXpHvz2RlfozdMMM_8H_Ai5RLhGEGqRa2SaU2CMAiAChSMyQ1VzWkuujsteS6BcGXNKznJeAwgpJc7I4rnLH9U2uDymkGnjcmgrvxnzPqRy3r8Pba7ikKrY9a734ZycRLfJ4eJvzsnr3e3L8oGunu4flzcr6rnWe9oap8FjWysGrhHCi2h8EN5EBCcgcgyeYRvBhegBhVBBGiciNshMbJDPydWUu0vD5xjy3q6HMfWl0jIlpJZKIysqNql8GnJOIdpd6rYufVkE-wPGTmBsAWN_wVgopmoyBT_0XT5YNGdciwKmSPgkyeXZv4V0aP8n-BuGu2-I</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Guedes, Pablo Cristini</creator><creator>Müller, Fernanda Maria</creator><creator>Righi, Marcelo Brutti</creator><general>Palgrave Macmillan UK</general><general>Palgrave Macmillan</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AF</scope><scope>8BJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-8276-7197</orcidid></search><sort><creationdate>20230301</creationdate><title>Risk measures-based cluster methods for finance</title><author>Guedes, Pablo Cristini ; Müller, Fernanda Maria ; Righi, Marcelo Brutti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-d9a80c1d4720ab55c5f9ce5c9f10a50f31ec21df0aefc01557e69a5f1b129fb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Application</topic><topic>Asset pricing</topic><topic>Capital</topic><topic>Classification</topic><topic>Cluster analysis</topic><topic>Clusters</topic><topic>Decision making</topic><topic>Economics and Finance</topic><topic>Finance</topic><topic>Optimization</topic><topic>Original Article</topic><topic>Risk</topic><topic>Risk Management</topic><topic>Securities markets</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guedes, Pablo Cristini</creatorcontrib><creatorcontrib>Müller, Fernanda Maria</creatorcontrib><creatorcontrib>Righi, Marcelo Brutti</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Risk management (Leicestershire, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guedes, Pablo Cristini</au><au>Müller, Fernanda Maria</au><au>Righi, Marcelo Brutti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Risk measures-based cluster methods for finance</atitle><jtitle>Risk management (Leicestershire, England)</jtitle><stitle>Risk Manag</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>25</volume><issue>1</issue><spage>1</spage><epage>56</epage><pages>1-56</pages><artnum>4</artnum><issn>1460-3799</issn><eissn>1743-4637</eissn><abstract>This paper performs an extensive comparison of cluster techniques for financial applications based on risk measures and returns as classification variables. We consider the cluster techniques and risk measures largely used in the literature. For the analysis, we use a database composed of daily returns of the U.S. equity market. As for financial applications, we consider capital determination, portfolio optimization, and asset pricing. We found that the number of clusters varies over the years. The years with the fewest clusters coincide with periods of instability, such as 2008 (Subprime Crisis) and 2015 (slowdown in United States domestic product). Overall, we observe that our data support the superiority of the Fanny and MC approaches. By construction, both techniques are more robust to the distinct probabilistic distribution of data, which is typically the case for financial data. Furthermore, our results highlight the practical utility of considering risk measures and returns as classification variables in financial applications.</abstract><cop>London</cop><pub>Palgrave Macmillan UK</pub><doi>10.1057/s41283-022-00110-0</doi><tpages>56</tpages><orcidid>https://orcid.org/0000-0002-8276-7197</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1460-3799 |
ispartof | Risk management (Leicestershire, England), 2023-03, Vol.25 (1), p.1-56, Article 4 |
issn | 1460-3799 1743-4637 |
language | eng |
recordid | cdi_proquest_journals_2756867812 |
source | Springer Nature - Complete Springer Journals |
subjects | Application Asset pricing Capital Classification Cluster analysis Clusters Decision making Economics and Finance Finance Optimization Original Article Risk Risk Management Securities markets Variables |
title | Risk measures-based cluster methods for finance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T08%3A56%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Risk%20measures-based%20cluster%20methods%20for%20finance&rft.jtitle=Risk%20management%20(Leicestershire,%20England)&rft.au=Guedes,%20Pablo%20Cristini&rft.date=2023-03-01&rft.volume=25&rft.issue=1&rft.spage=1&rft.epage=56&rft.pages=1-56&rft.artnum=4&rft.issn=1460-3799&rft.eissn=1743-4637&rft_id=info:doi/10.1057/s41283-022-00110-0&rft_dat=%3Cproquest_cross%3E2756867812%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2756867812&rft_id=info:pmid/&rfr_iscdi=true |