Fault Detection for CNC Machine Tools Using Auto-Associative Kernel Regression Based on Empirical Mode Decomposition

In manufacturing processes using computerized numerical control (CNC) machines, machine tools are operated repeatedly for a long period for machining hard and difficult-to-machine materials, such as stainless steel. These operating conditions frequently result in tool breakage. The failure of machin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2022-12, Vol.10 (12), p.2529
Hauptverfasser: Jung, Seunghwan, Kim, Minseok, Kim, Baekcheon, Kim, Jinyong, Kim, Eunkyeong, Kim, Jonggeun, Lee, Hyeonuk, Kim, Sungshin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 2529
container_title Processes
container_volume 10
creator Jung, Seunghwan
Kim, Minseok
Kim, Baekcheon
Kim, Jinyong
Kim, Eunkyeong
Kim, Jonggeun
Lee, Hyeonuk
Kim, Sungshin
description In manufacturing processes using computerized numerical control (CNC) machines, machine tools are operated repeatedly for a long period for machining hard and difficult-to-machine materials, such as stainless steel. These operating conditions frequently result in tool breakage. The failure of machine tools significantly degrades the product quality and efficiency of the target process. To solve these problems, various studies have been conducted for detecting faults in machine tools. However, the most related studies used only the univariate signal obtained from CNC machines. The fault-detection methods using univariate signals have a limitation in that multivariate models cannot be applied. This can restrict in performance improvement of the fault detection. To address this problem, we employed empirical mode decomposition to construct a multivariate dataset from the univariate signal. Subsequently, auto-associative kernel regression was used to detect faults in the machine tool. To verify the proposed method, we obtained a univariate current signal measured from the machining center in an actual industrial plant. The experimental results demonstrate that the proposed method successfully detects faults in the actual machine tools.
doi_str_mv 10.3390/pr10122529
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2756781420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A744994513</galeid><sourcerecordid>A744994513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-c8923ce105c53da1aa45861f943f480c1846096f07c78ced04a62b3c7902f8bc3</originalsourceid><addsrcrecordid>eNpNUUtLxDAQLqKg6F78BQFvQjWvNs2xrk90FWT3XOJ0ska6TU1SwX9vlxV05jAfw_c4fFl2yuiFEJpeDoFRxnnB9V52xDlXuVZM7f_Dh9ksxg86jWaiKsqjLN2asUvkGhNCcr4n1gcyf56ThYF31yNZet9FsoquX5N6TD6vY_TgTHJfSB4x9NiRV1wHjHErvzIRWzKBm83gggPTkYVvcQoAvxl8dNuQk-zAmi7i7PceZ6vbm-X8Pn96uXuY1085CCFTDpXmApDRAgrRGmaMLKqSWS2FlRUFVsmS6tJSBaoCbKk0JX8ToDTltnoDcZyd7XyH4D9HjKn58GPop8iGq6JUFZOcTqyLHWttOmxcb30KBqZtcePA92jd9K-VlFrLgolJcL4TQPAxBrTNENzGhO-G0WbbRPPXhPgBVd16Uw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756781420</pqid></control><display><type>article</type><title>Fault Detection for CNC Machine Tools Using Auto-Associative Kernel Regression Based on Empirical Mode Decomposition</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Jung, Seunghwan ; Kim, Minseok ; Kim, Baekcheon ; Kim, Jinyong ; Kim, Eunkyeong ; Kim, Jonggeun ; Lee, Hyeonuk ; Kim, Sungshin</creator><creatorcontrib>Jung, Seunghwan ; Kim, Minseok ; Kim, Baekcheon ; Kim, Jinyong ; Kim, Eunkyeong ; Kim, Jonggeun ; Lee, Hyeonuk ; Kim, Sungshin</creatorcontrib><description>In manufacturing processes using computerized numerical control (CNC) machines, machine tools are operated repeatedly for a long period for machining hard and difficult-to-machine materials, such as stainless steel. These operating conditions frequently result in tool breakage. The failure of machine tools significantly degrades the product quality and efficiency of the target process. To solve these problems, various studies have been conducted for detecting faults in machine tools. However, the most related studies used only the univariate signal obtained from CNC machines. The fault-detection methods using univariate signals have a limitation in that multivariate models cannot be applied. This can restrict in performance improvement of the fault detection. To address this problem, we employed empirical mode decomposition to construct a multivariate dataset from the univariate signal. Subsequently, auto-associative kernel regression was used to detect faults in the machine tool. To verify the proposed method, we obtained a univariate current signal measured from the machining center in an actual industrial plant. The experimental results demonstrate that the proposed method successfully detects faults in the actual machine tools.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr10122529</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Automation ; Data processing ; Datasets ; Fault detection ; Faults ; Industrial plants ; Kernels ; Machine tools ; Machining ; Machining centres ; Machinists' tools ; Mathematical models ; Multivariate analysis ; Numerical controls ; Parameter estimation ; Quality management ; Signal processing ; Stainless steel ; Stainless steels ; Statistical methods ; Technology application ; Tool industry ; Wavelet transforms</subject><ispartof>Processes, 2022-12, Vol.10 (12), p.2529</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-c8923ce105c53da1aa45861f943f480c1846096f07c78ced04a62b3c7902f8bc3</citedby><cites>FETCH-LOGICAL-c334t-c8923ce105c53da1aa45861f943f480c1846096f07c78ced04a62b3c7902f8bc3</cites><orcidid>0000-0002-9387-393X ; 0000-0002-1303-3907 ; 0000-0001-5077-6569 ; 0000-0003-4932-5458 ; 0000-0002-0235-9872 ; 0000-0002-9013-2079 ; 0000-0002-2782-7775 ; 0000-0002-1254-1643</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Jung, Seunghwan</creatorcontrib><creatorcontrib>Kim, Minseok</creatorcontrib><creatorcontrib>Kim, Baekcheon</creatorcontrib><creatorcontrib>Kim, Jinyong</creatorcontrib><creatorcontrib>Kim, Eunkyeong</creatorcontrib><creatorcontrib>Kim, Jonggeun</creatorcontrib><creatorcontrib>Lee, Hyeonuk</creatorcontrib><creatorcontrib>Kim, Sungshin</creatorcontrib><title>Fault Detection for CNC Machine Tools Using Auto-Associative Kernel Regression Based on Empirical Mode Decomposition</title><title>Processes</title><description>In manufacturing processes using computerized numerical control (CNC) machines, machine tools are operated repeatedly for a long period for machining hard and difficult-to-machine materials, such as stainless steel. These operating conditions frequently result in tool breakage. The failure of machine tools significantly degrades the product quality and efficiency of the target process. To solve these problems, various studies have been conducted for detecting faults in machine tools. However, the most related studies used only the univariate signal obtained from CNC machines. The fault-detection methods using univariate signals have a limitation in that multivariate models cannot be applied. This can restrict in performance improvement of the fault detection. To address this problem, we employed empirical mode decomposition to construct a multivariate dataset from the univariate signal. Subsequently, auto-associative kernel regression was used to detect faults in the machine tool. To verify the proposed method, we obtained a univariate current signal measured from the machining center in an actual industrial plant. The experimental results demonstrate that the proposed method successfully detects faults in the actual machine tools.</description><subject>Algorithms</subject><subject>Automation</subject><subject>Data processing</subject><subject>Datasets</subject><subject>Fault detection</subject><subject>Faults</subject><subject>Industrial plants</subject><subject>Kernels</subject><subject>Machine tools</subject><subject>Machining</subject><subject>Machining centres</subject><subject>Machinists' tools</subject><subject>Mathematical models</subject><subject>Multivariate analysis</subject><subject>Numerical controls</subject><subject>Parameter estimation</subject><subject>Quality management</subject><subject>Signal processing</subject><subject>Stainless steel</subject><subject>Stainless steels</subject><subject>Statistical methods</subject><subject>Technology application</subject><subject>Tool industry</subject><subject>Wavelet transforms</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNUUtLxDAQLqKg6F78BQFvQjWvNs2xrk90FWT3XOJ0ska6TU1SwX9vlxV05jAfw_c4fFl2yuiFEJpeDoFRxnnB9V52xDlXuVZM7f_Dh9ksxg86jWaiKsqjLN2asUvkGhNCcr4n1gcyf56ThYF31yNZet9FsoquX5N6TD6vY_TgTHJfSB4x9NiRV1wHjHErvzIRWzKBm83gggPTkYVvcQoAvxl8dNuQk-zAmi7i7PceZ6vbm-X8Pn96uXuY1085CCFTDpXmApDRAgrRGmaMLKqSWS2FlRUFVsmS6tJSBaoCbKk0JX8ToDTltnoDcZyd7XyH4D9HjKn58GPop8iGq6JUFZOcTqyLHWttOmxcb30KBqZtcePA92jd9K-VlFrLgolJcL4TQPAxBrTNENzGhO-G0WbbRPPXhPgBVd16Uw</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Jung, Seunghwan</creator><creator>Kim, Minseok</creator><creator>Kim, Baekcheon</creator><creator>Kim, Jinyong</creator><creator>Kim, Eunkyeong</creator><creator>Kim, Jonggeun</creator><creator>Lee, Hyeonuk</creator><creator>Kim, Sungshin</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-9387-393X</orcidid><orcidid>https://orcid.org/0000-0002-1303-3907</orcidid><orcidid>https://orcid.org/0000-0001-5077-6569</orcidid><orcidid>https://orcid.org/0000-0003-4932-5458</orcidid><orcidid>https://orcid.org/0000-0002-0235-9872</orcidid><orcidid>https://orcid.org/0000-0002-9013-2079</orcidid><orcidid>https://orcid.org/0000-0002-2782-7775</orcidid><orcidid>https://orcid.org/0000-0002-1254-1643</orcidid></search><sort><creationdate>20221201</creationdate><title>Fault Detection for CNC Machine Tools Using Auto-Associative Kernel Regression Based on Empirical Mode Decomposition</title><author>Jung, Seunghwan ; Kim, Minseok ; Kim, Baekcheon ; Kim, Jinyong ; Kim, Eunkyeong ; Kim, Jonggeun ; Lee, Hyeonuk ; Kim, Sungshin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-c8923ce105c53da1aa45861f943f480c1846096f07c78ced04a62b3c7902f8bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Automation</topic><topic>Data processing</topic><topic>Datasets</topic><topic>Fault detection</topic><topic>Faults</topic><topic>Industrial plants</topic><topic>Kernels</topic><topic>Machine tools</topic><topic>Machining</topic><topic>Machining centres</topic><topic>Machinists' tools</topic><topic>Mathematical models</topic><topic>Multivariate analysis</topic><topic>Numerical controls</topic><topic>Parameter estimation</topic><topic>Quality management</topic><topic>Signal processing</topic><topic>Stainless steel</topic><topic>Stainless steels</topic><topic>Statistical methods</topic><topic>Technology application</topic><topic>Tool industry</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jung, Seunghwan</creatorcontrib><creatorcontrib>Kim, Minseok</creatorcontrib><creatorcontrib>Kim, Baekcheon</creatorcontrib><creatorcontrib>Kim, Jinyong</creatorcontrib><creatorcontrib>Kim, Eunkyeong</creatorcontrib><creatorcontrib>Kim, Jonggeun</creatorcontrib><creatorcontrib>Lee, Hyeonuk</creatorcontrib><creatorcontrib>Kim, Sungshin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jung, Seunghwan</au><au>Kim, Minseok</au><au>Kim, Baekcheon</au><au>Kim, Jinyong</au><au>Kim, Eunkyeong</au><au>Kim, Jonggeun</au><au>Lee, Hyeonuk</au><au>Kim, Sungshin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fault Detection for CNC Machine Tools Using Auto-Associative Kernel Regression Based on Empirical Mode Decomposition</atitle><jtitle>Processes</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>10</volume><issue>12</issue><spage>2529</spage><pages>2529-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>In manufacturing processes using computerized numerical control (CNC) machines, machine tools are operated repeatedly for a long period for machining hard and difficult-to-machine materials, such as stainless steel. These operating conditions frequently result in tool breakage. The failure of machine tools significantly degrades the product quality and efficiency of the target process. To solve these problems, various studies have been conducted for detecting faults in machine tools. However, the most related studies used only the univariate signal obtained from CNC machines. The fault-detection methods using univariate signals have a limitation in that multivariate models cannot be applied. This can restrict in performance improvement of the fault detection. To address this problem, we employed empirical mode decomposition to construct a multivariate dataset from the univariate signal. Subsequently, auto-associative kernel regression was used to detect faults in the machine tool. To verify the proposed method, we obtained a univariate current signal measured from the machining center in an actual industrial plant. The experimental results demonstrate that the proposed method successfully detects faults in the actual machine tools.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr10122529</doi><orcidid>https://orcid.org/0000-0002-9387-393X</orcidid><orcidid>https://orcid.org/0000-0002-1303-3907</orcidid><orcidid>https://orcid.org/0000-0001-5077-6569</orcidid><orcidid>https://orcid.org/0000-0003-4932-5458</orcidid><orcidid>https://orcid.org/0000-0002-0235-9872</orcidid><orcidid>https://orcid.org/0000-0002-9013-2079</orcidid><orcidid>https://orcid.org/0000-0002-2782-7775</orcidid><orcidid>https://orcid.org/0000-0002-1254-1643</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-9717
ispartof Processes, 2022-12, Vol.10 (12), p.2529
issn 2227-9717
2227-9717
language eng
recordid cdi_proquest_journals_2756781420
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Automation
Data processing
Datasets
Fault detection
Faults
Industrial plants
Kernels
Machine tools
Machining
Machining centres
Machinists' tools
Mathematical models
Multivariate analysis
Numerical controls
Parameter estimation
Quality management
Signal processing
Stainless steel
Stainless steels
Statistical methods
Technology application
Tool industry
Wavelet transforms
title Fault Detection for CNC Machine Tools Using Auto-Associative Kernel Regression Based on Empirical Mode Decomposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T16%3A04%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fault%20Detection%20for%20CNC%20Machine%20Tools%20Using%20Auto-Associative%20Kernel%20Regression%20Based%20on%20Empirical%20Mode%20Decomposition&rft.jtitle=Processes&rft.au=Jung,%20Seunghwan&rft.date=2022-12-01&rft.volume=10&rft.issue=12&rft.spage=2529&rft.pages=2529-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr10122529&rft_dat=%3Cgale_proqu%3EA744994513%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2756781420&rft_id=info:pmid/&rft_galeid=A744994513&rfr_iscdi=true