Mineralogical and Fluid Inclusion Evidence for Reworking of Au Mineralization by Ag-Sb-Base Metal-Rich Fluids from the Bytíz Deposit, Příbram Uranium and Base-Metal Ore District, Czech Republic

This mineralogical and fluid inclusion study was conducted on an Au-bearing quartz–sulfide vein encountered in the deep parts of the Bytíz deposit in the Příbram uranium and base-metal district, Bohemian Massif, Czech Republic. The samples were taken where the Au-bearing vein is crosscut by the comm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Minerals (Basel) 2022-12, Vol.12 (12), p.1539
Hauptverfasser: Sejkora, Jiří, Dolníček, Zdeněk, Zachariáš, Jiří, Ulmanová, Jana, Šrein, Vladimír, Škácha, Pavel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 1539
container_title Minerals (Basel)
container_volume 12
creator Sejkora, Jiří
Dolníček, Zdeněk
Zachariáš, Jiří
Ulmanová, Jana
Šrein, Vladimír
Škácha, Pavel
description This mineralogical and fluid inclusion study was conducted on an Au-bearing quartz–sulfide vein encountered in the deep parts of the Bytíz deposit in the Příbram uranium and base-metal district, Bohemian Massif, Czech Republic. The samples were taken where the Au-bearing vein is crosscut by the common base-metal Zn-Pb ore vein Bt23C. The early mineralization of the Au-bearing vein is composed mainly of quartz (Q-1 to Q-3), illite–muscovite, Fe-Mg chlorite, arsenopyrite, and Au-Ag alloys, showing a wide range of compositions (4–69 at. % Ag) and a decrease in Au/(Au + Ag) ratios during vein evolution. Younger hydrothermal processes led to the crystallization of nests and veinlets composed of late quartz (Q-4), carbonates (siderite, dolomite–ankerite and calcite), base-metal sulfides (galena, sphalerite, chalcopyrite, and tetrahedrite), a suite of Ag and Bi-tellurides, and acanthite. The input of Sb is manifested by the partial to complete replacement of some gold grains by aurostibite and an unnamed (Ag,Au)-Sb oxide with a composition close to AuSbO3. The fluid inclusion study, combined with chlorite thermometry and arsenopyrite thermometry, showed that the early mineralization crystallized from progressively cooled (from 300 to 400 °C down to ca. 180 °C), diluted (1.2–7.0 wt. % NaCl eq.) aqueous solutions. The late portion of the mineralization formed from aqueous fluids with highly variable salinity (0.2–23.4 wt. % NaCl eq.) and homogenization temperatures decreasing from ca. 250 °C to < 50 °C, which compare well with the base-metal mineralization of the vein Bt23C and other base-metal veins of the Příbram ore area. Our study illustrates the nature and intensity of the processes of the reworking of the early gold mineralization mediated by the younger Ag,Sb-rich base-metal fluids, giving rise to Příbram’s typical late-Variscan vein Zn-Pb mineralization.
doi_str_mv 10.3390/min12121539
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2756755280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2756755280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c228t-e92e376b3bdf1de0aecac6c3ee0fb10cf559eda1a555cbb4d10c2a11c0432fe23</originalsourceid><addsrcrecordid>eNpNkUtOAzEMhkcIJBB0xQUssYSBPEjbWZZSHlIRqIDEbpRknBKYSUoyA2pvwiE4BXAvppQF9sKW9fuzpT9Jdik55DwjR5V1lLUpeLaWbDHSEynt8of1f_1m0onxibSRUd4XbCv5urIOgyz91GpZgnQFnJWNLeDS6bKJ1jsYvdoCnUYwPsAE33x4tm4K3sCggb91u5D1UqvmMJimtyo9kRHhCmtZphOrH1fQCCb4CupHhJN5_fmxgFOc-WjrA7j5fv_8UEFWcB-ks031-8qSkv5S4DognNpYB6tb-XCBLXSCs0aVVu8kG0aWETt_dTu5PxvdDS_S8fX55XAwTjVj_TrFjCHvdRVXhaEFEola6q7miMQoSrQRIsNCUimE0EodF-2MSUo1OebMIOPbyd6KOwv-pcFY50--Ca49mbOe6PaEYH3SqvZXKh18jAFNPgu2kmGeU5Ivncr_OcV_ALkGi3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756755280</pqid></control><display><type>article</type><title>Mineralogical and Fluid Inclusion Evidence for Reworking of Au Mineralization by Ag-Sb-Base Metal-Rich Fluids from the Bytíz Deposit, Příbram Uranium and Base-Metal Ore District, Czech Republic</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Sejkora, Jiří ; Dolníček, Zdeněk ; Zachariáš, Jiří ; Ulmanová, Jana ; Šrein, Vladimír ; Škácha, Pavel</creator><creatorcontrib>Sejkora, Jiří ; Dolníček, Zdeněk ; Zachariáš, Jiří ; Ulmanová, Jana ; Šrein, Vladimír ; Škácha, Pavel</creatorcontrib><description>This mineralogical and fluid inclusion study was conducted on an Au-bearing quartz–sulfide vein encountered in the deep parts of the Bytíz deposit in the Příbram uranium and base-metal district, Bohemian Massif, Czech Republic. The samples were taken where the Au-bearing vein is crosscut by the common base-metal Zn-Pb ore vein Bt23C. The early mineralization of the Au-bearing vein is composed mainly of quartz (Q-1 to Q-3), illite–muscovite, Fe-Mg chlorite, arsenopyrite, and Au-Ag alloys, showing a wide range of compositions (4–69 at. % Ag) and a decrease in Au/(Au + Ag) ratios during vein evolution. Younger hydrothermal processes led to the crystallization of nests and veinlets composed of late quartz (Q-4), carbonates (siderite, dolomite–ankerite and calcite), base-metal sulfides (galena, sphalerite, chalcopyrite, and tetrahedrite), a suite of Ag and Bi-tellurides, and acanthite. The input of Sb is manifested by the partial to complete replacement of some gold grains by aurostibite and an unnamed (Ag,Au)-Sb oxide with a composition close to AuSbO3. The fluid inclusion study, combined with chlorite thermometry and arsenopyrite thermometry, showed that the early mineralization crystallized from progressively cooled (from 300 to 400 °C down to ca. 180 °C), diluted (1.2–7.0 wt. % NaCl eq.) aqueous solutions. The late portion of the mineralization formed from aqueous fluids with highly variable salinity (0.2–23.4 wt. % NaCl eq.) and homogenization temperatures decreasing from ca. 250 °C to &lt; 50 °C, which compare well with the base-metal mineralization of the vein Bt23C and other base-metal veins of the Příbram ore area. Our study illustrates the nature and intensity of the processes of the reworking of the early gold mineralization mediated by the younger Ag,Sb-rich base-metal fluids, giving rise to Příbram’s typical late-Variscan vein Zn-Pb mineralization.</description><identifier>ISSN: 2075-163X</identifier><identifier>EISSN: 2075-163X</identifier><identifier>DOI: 10.3390/min12121539</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Antimony ; Aqueous solutions ; Arsenopyrite ; Base metal ; Bismuth ; Calcite ; Carbonates ; Chalcopyrite ; Chlorite ; Composition ; Crystallization ; Dolomite ; Dolostone ; Fluid inclusions ; Fluids ; Galena ; Gold ; Gold base alloys ; Heavy metals ; Hydrothermal activity ; Illite ; Illites ; Lead ; Massifs ; Metal sulfides ; Metals ; Mica ; Mineralization ; Mineralogy ; Minerals ; Mines ; Mining ; Muscovite ; Museums ; Nests ; Quartz ; Siderite ; Sodium chloride ; Sphalerite ; Sulfides ; Sulphides ; Tellurides ; Uranium ; Veins (geology) ; Zeolites ; Zinc</subject><ispartof>Minerals (Basel), 2022-12, Vol.12 (12), p.1539</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c228t-e92e376b3bdf1de0aecac6c3ee0fb10cf559eda1a555cbb4d10c2a11c0432fe23</citedby><cites>FETCH-LOGICAL-c228t-e92e376b3bdf1de0aecac6c3ee0fb10cf559eda1a555cbb4d10c2a11c0432fe23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Sejkora, Jiří</creatorcontrib><creatorcontrib>Dolníček, Zdeněk</creatorcontrib><creatorcontrib>Zachariáš, Jiří</creatorcontrib><creatorcontrib>Ulmanová, Jana</creatorcontrib><creatorcontrib>Šrein, Vladimír</creatorcontrib><creatorcontrib>Škácha, Pavel</creatorcontrib><title>Mineralogical and Fluid Inclusion Evidence for Reworking of Au Mineralization by Ag-Sb-Base Metal-Rich Fluids from the Bytíz Deposit, Příbram Uranium and Base-Metal Ore District, Czech Republic</title><title>Minerals (Basel)</title><description>This mineralogical and fluid inclusion study was conducted on an Au-bearing quartz–sulfide vein encountered in the deep parts of the Bytíz deposit in the Příbram uranium and base-metal district, Bohemian Massif, Czech Republic. The samples were taken where the Au-bearing vein is crosscut by the common base-metal Zn-Pb ore vein Bt23C. The early mineralization of the Au-bearing vein is composed mainly of quartz (Q-1 to Q-3), illite–muscovite, Fe-Mg chlorite, arsenopyrite, and Au-Ag alloys, showing a wide range of compositions (4–69 at. % Ag) and a decrease in Au/(Au + Ag) ratios during vein evolution. Younger hydrothermal processes led to the crystallization of nests and veinlets composed of late quartz (Q-4), carbonates (siderite, dolomite–ankerite and calcite), base-metal sulfides (galena, sphalerite, chalcopyrite, and tetrahedrite), a suite of Ag and Bi-tellurides, and acanthite. The input of Sb is manifested by the partial to complete replacement of some gold grains by aurostibite and an unnamed (Ag,Au)-Sb oxide with a composition close to AuSbO3. The fluid inclusion study, combined with chlorite thermometry and arsenopyrite thermometry, showed that the early mineralization crystallized from progressively cooled (from 300 to 400 °C down to ca. 180 °C), diluted (1.2–7.0 wt. % NaCl eq.) aqueous solutions. The late portion of the mineralization formed from aqueous fluids with highly variable salinity (0.2–23.4 wt. % NaCl eq.) and homogenization temperatures decreasing from ca. 250 °C to &lt; 50 °C, which compare well with the base-metal mineralization of the vein Bt23C and other base-metal veins of the Příbram ore area. Our study illustrates the nature and intensity of the processes of the reworking of the early gold mineralization mediated by the younger Ag,Sb-rich base-metal fluids, giving rise to Příbram’s typical late-Variscan vein Zn-Pb mineralization.</description><subject>Antimony</subject><subject>Aqueous solutions</subject><subject>Arsenopyrite</subject><subject>Base metal</subject><subject>Bismuth</subject><subject>Calcite</subject><subject>Carbonates</subject><subject>Chalcopyrite</subject><subject>Chlorite</subject><subject>Composition</subject><subject>Crystallization</subject><subject>Dolomite</subject><subject>Dolostone</subject><subject>Fluid inclusions</subject><subject>Fluids</subject><subject>Galena</subject><subject>Gold</subject><subject>Gold base alloys</subject><subject>Heavy metals</subject><subject>Hydrothermal activity</subject><subject>Illite</subject><subject>Illites</subject><subject>Lead</subject><subject>Massifs</subject><subject>Metal sulfides</subject><subject>Metals</subject><subject>Mica</subject><subject>Mineralization</subject><subject>Mineralogy</subject><subject>Minerals</subject><subject>Mines</subject><subject>Mining</subject><subject>Muscovite</subject><subject>Museums</subject><subject>Nests</subject><subject>Quartz</subject><subject>Siderite</subject><subject>Sodium chloride</subject><subject>Sphalerite</subject><subject>Sulfides</subject><subject>Sulphides</subject><subject>Tellurides</subject><subject>Uranium</subject><subject>Veins (geology)</subject><subject>Zeolites</subject><subject>Zinc</subject><issn>2075-163X</issn><issn>2075-163X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkUtOAzEMhkcIJBB0xQUssYSBPEjbWZZSHlIRqIDEbpRknBKYSUoyA2pvwiE4BXAvppQF9sKW9fuzpT9Jdik55DwjR5V1lLUpeLaWbDHSEynt8of1f_1m0onxibSRUd4XbCv5urIOgyz91GpZgnQFnJWNLeDS6bKJ1jsYvdoCnUYwPsAE33x4tm4K3sCggb91u5D1UqvmMJimtyo9kRHhCmtZphOrH1fQCCb4CupHhJN5_fmxgFOc-WjrA7j5fv_8UEFWcB-ks031-8qSkv5S4DognNpYB6tb-XCBLXSCs0aVVu8kG0aWETt_dTu5PxvdDS_S8fX55XAwTjVj_TrFjCHvdRVXhaEFEola6q7miMQoSrQRIsNCUimE0EodF-2MSUo1OebMIOPbyd6KOwv-pcFY50--Ca49mbOe6PaEYH3SqvZXKh18jAFNPgu2kmGeU5Ivncr_OcV_ALkGi3A</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Sejkora, Jiří</creator><creator>Dolníček, Zdeněk</creator><creator>Zachariáš, Jiří</creator><creator>Ulmanová, Jana</creator><creator>Šrein, Vladimír</creator><creator>Škácha, Pavel</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>KR7</scope><scope>L.-</scope><scope>L.G</scope><scope>M0C</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20221201</creationdate><title>Mineralogical and Fluid Inclusion Evidence for Reworking of Au Mineralization by Ag-Sb-Base Metal-Rich Fluids from the Bytíz Deposit, Příbram Uranium and Base-Metal Ore District, Czech Republic</title><author>Sejkora, Jiří ; Dolníček, Zdeněk ; Zachariáš, Jiří ; Ulmanová, Jana ; Šrein, Vladimír ; Škácha, Pavel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c228t-e92e376b3bdf1de0aecac6c3ee0fb10cf559eda1a555cbb4d10c2a11c0432fe23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antimony</topic><topic>Aqueous solutions</topic><topic>Arsenopyrite</topic><topic>Base metal</topic><topic>Bismuth</topic><topic>Calcite</topic><topic>Carbonates</topic><topic>Chalcopyrite</topic><topic>Chlorite</topic><topic>Composition</topic><topic>Crystallization</topic><topic>Dolomite</topic><topic>Dolostone</topic><topic>Fluid inclusions</topic><topic>Fluids</topic><topic>Galena</topic><topic>Gold</topic><topic>Gold base alloys</topic><topic>Heavy metals</topic><topic>Hydrothermal activity</topic><topic>Illite</topic><topic>Illites</topic><topic>Lead</topic><topic>Massifs</topic><topic>Metal sulfides</topic><topic>Metals</topic><topic>Mica</topic><topic>Mineralization</topic><topic>Mineralogy</topic><topic>Minerals</topic><topic>Mines</topic><topic>Mining</topic><topic>Muscovite</topic><topic>Museums</topic><topic>Nests</topic><topic>Quartz</topic><topic>Siderite</topic><topic>Sodium chloride</topic><topic>Sphalerite</topic><topic>Sulfides</topic><topic>Sulphides</topic><topic>Tellurides</topic><topic>Uranium</topic><topic>Veins (geology)</topic><topic>Zeolites</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sejkora, Jiří</creatorcontrib><creatorcontrib>Dolníček, Zdeněk</creatorcontrib><creatorcontrib>Zachariáš, Jiří</creatorcontrib><creatorcontrib>Ulmanová, Jana</creatorcontrib><creatorcontrib>Šrein, Vladimír</creatorcontrib><creatorcontrib>Škácha, Pavel</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ABI/INFORM Global</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Minerals (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sejkora, Jiří</au><au>Dolníček, Zdeněk</au><au>Zachariáš, Jiří</au><au>Ulmanová, Jana</au><au>Šrein, Vladimír</au><au>Škácha, Pavel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mineralogical and Fluid Inclusion Evidence for Reworking of Au Mineralization by Ag-Sb-Base Metal-Rich Fluids from the Bytíz Deposit, Příbram Uranium and Base-Metal Ore District, Czech Republic</atitle><jtitle>Minerals (Basel)</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>12</volume><issue>12</issue><spage>1539</spage><pages>1539-</pages><issn>2075-163X</issn><eissn>2075-163X</eissn><abstract>This mineralogical and fluid inclusion study was conducted on an Au-bearing quartz–sulfide vein encountered in the deep parts of the Bytíz deposit in the Příbram uranium and base-metal district, Bohemian Massif, Czech Republic. The samples were taken where the Au-bearing vein is crosscut by the common base-metal Zn-Pb ore vein Bt23C. The early mineralization of the Au-bearing vein is composed mainly of quartz (Q-1 to Q-3), illite–muscovite, Fe-Mg chlorite, arsenopyrite, and Au-Ag alloys, showing a wide range of compositions (4–69 at. % Ag) and a decrease in Au/(Au + Ag) ratios during vein evolution. Younger hydrothermal processes led to the crystallization of nests and veinlets composed of late quartz (Q-4), carbonates (siderite, dolomite–ankerite and calcite), base-metal sulfides (galena, sphalerite, chalcopyrite, and tetrahedrite), a suite of Ag and Bi-tellurides, and acanthite. The input of Sb is manifested by the partial to complete replacement of some gold grains by aurostibite and an unnamed (Ag,Au)-Sb oxide with a composition close to AuSbO3. The fluid inclusion study, combined with chlorite thermometry and arsenopyrite thermometry, showed that the early mineralization crystallized from progressively cooled (from 300 to 400 °C down to ca. 180 °C), diluted (1.2–7.0 wt. % NaCl eq.) aqueous solutions. The late portion of the mineralization formed from aqueous fluids with highly variable salinity (0.2–23.4 wt. % NaCl eq.) and homogenization temperatures decreasing from ca. 250 °C to &lt; 50 °C, which compare well with the base-metal mineralization of the vein Bt23C and other base-metal veins of the Příbram ore area. Our study illustrates the nature and intensity of the processes of the reworking of the early gold mineralization mediated by the younger Ag,Sb-rich base-metal fluids, giving rise to Příbram’s typical late-Variscan vein Zn-Pb mineralization.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/min12121539</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2075-163X
ispartof Minerals (Basel), 2022-12, Vol.12 (12), p.1539
issn 2075-163X
2075-163X
language eng
recordid cdi_proquest_journals_2756755280
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Antimony
Aqueous solutions
Arsenopyrite
Base metal
Bismuth
Calcite
Carbonates
Chalcopyrite
Chlorite
Composition
Crystallization
Dolomite
Dolostone
Fluid inclusions
Fluids
Galena
Gold
Gold base alloys
Heavy metals
Hydrothermal activity
Illite
Illites
Lead
Massifs
Metal sulfides
Metals
Mica
Mineralization
Mineralogy
Minerals
Mines
Mining
Muscovite
Museums
Nests
Quartz
Siderite
Sodium chloride
Sphalerite
Sulfides
Sulphides
Tellurides
Uranium
Veins (geology)
Zeolites
Zinc
title Mineralogical and Fluid Inclusion Evidence for Reworking of Au Mineralization by Ag-Sb-Base Metal-Rich Fluids from the Bytíz Deposit, Příbram Uranium and Base-Metal Ore District, Czech Republic
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A37%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mineralogical%20and%20Fluid%20Inclusion%20Evidence%20for%20Reworking%20of%20Au%20Mineralization%20by%20Ag-Sb-Base%20Metal-Rich%20Fluids%20from%20the%20Byt%C3%ADz%20Deposit,%20P%C5%99%C3%ADbram%20Uranium%20and%20Base-Metal%20Ore%20District,%20Czech%20Republic&rft.jtitle=Minerals%20(Basel)&rft.au=Sejkora,%20Ji%C5%99%C3%AD&rft.date=2022-12-01&rft.volume=12&rft.issue=12&rft.spage=1539&rft.pages=1539-&rft.issn=2075-163X&rft.eissn=2075-163X&rft_id=info:doi/10.3390/min12121539&rft_dat=%3Cproquest_cross%3E2756755280%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2756755280&rft_id=info:pmid/&rfr_iscdi=true