Conditions for Proton Temperature Anisotropy to Drive Instabilities in the Solar Wind
Using high-resolution data from Solar Orbiter, we investigate the plasma conditions necessary for the proton temperature-anisotropy-driven mirror-mode and oblique firehose instabilities to occur in the solar wind. We find that the unstable plasma exhibits dependencies on the angle between the direct...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2022-12, Vol.941 (2), p.176 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 176 |
container_title | The Astrophysical journal |
container_volume | 941 |
creator | Opie, Simon Verscharen, Daniel Chen, Christopher H. K. Owen, Christopher J. Isenberg, Philip A. |
description | Using high-resolution data from Solar Orbiter, we investigate the plasma conditions necessary for the proton temperature-anisotropy-driven mirror-mode and oblique firehose instabilities to occur in the solar wind. We find that the unstable plasma exhibits dependencies on the angle between the direction of the magnetic field and the bulk solar wind velocity which cannot be explained by the double-adiabatic expansion of the solar wind alone. The angle dependencies suggest that perpendicular heating in Alfvénic wind may be responsible. We quantify the occurrence rate of the two instabilities as a function of the length of unstable intervals as they are convected over the spacecraft. This analysis indicates that mirror-mode and oblique firehose instabilities require a spatial interval of length greater than 2–3 unstable wavelengths in order to relax the plasma into a marginally stable state and thus closer to thermodynamic equilibrium in the solar wind. Our analysis suggests that the conditions for these instabilities to act effectively vary locally on scales much shorter than the correlation length of solar wind turbulence. |
doi_str_mv | 10.3847/1538-4357/ac982f |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2756713376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2756713376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-631ddae13136508f24e29dbfc2dc378e4e60bd90faf91fc572da5d048bee8d0c3</originalsourceid><addsrcrecordid>eNp1kM9LwzAYhoMoOKd3jwHxZl1-tE16HHPqYKDght5C2iSYsSU1yYT997ZU9KKn8IXnfb-PB4BLjG4pz9kEF5RnOS3YRDYVJ-YIjH6-jsEIIZRnJWVvp-Asxk0_kqoagfXMO2WT9S5C4wN8Dj55B1d61-og0z5oOHU2-hR8e4DJw7tgPzVcuJhkbbddUkdoHUzvGr74rQzw1Tp1Dk6M3EZ98f2Owfp-vpo9Zsunh8VsuswaylHq7sFKSY0ppmWBuCG5JpWqTUNUQxnXuS5RrSpkpKmwaQpGlCwUynmtNVeooWNwNfS2wX_sdUxi4_fBdSsFYUXJMKWs7Cg0UE3wMQZtRBvsToaDwEj08kRvSvSmxCCvi1wPEevb307ZbkSVY0EEZqVoVc_d_MH9W_sFoHF-YA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756713376</pqid></control><display><type>article</type><title>Conditions for Proton Temperature Anisotropy to Drive Instabilities in the Solar Wind</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Opie, Simon ; Verscharen, Daniel ; Chen, Christopher H. K. ; Owen, Christopher J. ; Isenberg, Philip A.</creator><creatorcontrib>Opie, Simon ; Verscharen, Daniel ; Chen, Christopher H. K. ; Owen, Christopher J. ; Isenberg, Philip A.</creatorcontrib><description>Using high-resolution data from Solar Orbiter, we investigate the plasma conditions necessary for the proton temperature-anisotropy-driven mirror-mode and oblique firehose instabilities to occur in the solar wind. We find that the unstable plasma exhibits dependencies on the angle between the direction of the magnetic field and the bulk solar wind velocity which cannot be explained by the double-adiabatic expansion of the solar wind alone. The angle dependencies suggest that perpendicular heating in Alfvénic wind may be responsible. We quantify the occurrence rate of the two instabilities as a function of the length of unstable intervals as they are convected over the spacecraft. This analysis indicates that mirror-mode and oblique firehose instabilities require a spatial interval of length greater than 2–3 unstable wavelengths in order to relax the plasma into a marginally stable state and thus closer to thermodynamic equilibrium in the solar wind. Our analysis suggests that the conditions for these instabilities to act effectively vary locally on scales much shorter than the correlation length of solar wind turbulence.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ac982f</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Alfven waves ; Anisotropy ; Astrophysics ; Heliosphere ; Interplanetary turbulence ; Magnetic fields ; Plasma physics ; Protons ; Solar magnetic field ; Solar Orbiter (ESA) ; Solar orbits ; Solar wind ; Solar wind turbulence ; Solar wind velocity ; Space plasmas ; Spacecraft ; Thermodynamic equilibrium ; Wavelengths ; Wind speed ; Wind velocities</subject><ispartof>The Astrophysical journal, 2022-12, Vol.941 (2), p.176</ispartof><rights>2022. The Author(s). Published by the American Astronomical Society.</rights><rights>2022. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-631ddae13136508f24e29dbfc2dc378e4e60bd90faf91fc572da5d048bee8d0c3</citedby><cites>FETCH-LOGICAL-c380t-631ddae13136508f24e29dbfc2dc378e4e60bd90faf91fc572da5d048bee8d0c3</cites><orcidid>0000-0003-0505-8546 ; 0000-0003-4529-3620 ; 0000-0002-0497-1096 ; 0000-0002-5982-4667 ; 0000-0002-2280-8807</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ac982f/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,27923,27924,38889,53866</link.rule.ids></links><search><creatorcontrib>Opie, Simon</creatorcontrib><creatorcontrib>Verscharen, Daniel</creatorcontrib><creatorcontrib>Chen, Christopher H. K.</creatorcontrib><creatorcontrib>Owen, Christopher J.</creatorcontrib><creatorcontrib>Isenberg, Philip A.</creatorcontrib><title>Conditions for Proton Temperature Anisotropy to Drive Instabilities in the Solar Wind</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Using high-resolution data from Solar Orbiter, we investigate the plasma conditions necessary for the proton temperature-anisotropy-driven mirror-mode and oblique firehose instabilities to occur in the solar wind. We find that the unstable plasma exhibits dependencies on the angle between the direction of the magnetic field and the bulk solar wind velocity which cannot be explained by the double-adiabatic expansion of the solar wind alone. The angle dependencies suggest that perpendicular heating in Alfvénic wind may be responsible. We quantify the occurrence rate of the two instabilities as a function of the length of unstable intervals as they are convected over the spacecraft. This analysis indicates that mirror-mode and oblique firehose instabilities require a spatial interval of length greater than 2–3 unstable wavelengths in order to relax the plasma into a marginally stable state and thus closer to thermodynamic equilibrium in the solar wind. Our analysis suggests that the conditions for these instabilities to act effectively vary locally on scales much shorter than the correlation length of solar wind turbulence.</description><subject>Alfven waves</subject><subject>Anisotropy</subject><subject>Astrophysics</subject><subject>Heliosphere</subject><subject>Interplanetary turbulence</subject><subject>Magnetic fields</subject><subject>Plasma physics</subject><subject>Protons</subject><subject>Solar magnetic field</subject><subject>Solar Orbiter (ESA)</subject><subject>Solar orbits</subject><subject>Solar wind</subject><subject>Solar wind turbulence</subject><subject>Solar wind velocity</subject><subject>Space plasmas</subject><subject>Spacecraft</subject><subject>Thermodynamic equilibrium</subject><subject>Wavelengths</subject><subject>Wind speed</subject><subject>Wind velocities</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kM9LwzAYhoMoOKd3jwHxZl1-tE16HHPqYKDght5C2iSYsSU1yYT997ZU9KKn8IXnfb-PB4BLjG4pz9kEF5RnOS3YRDYVJ-YIjH6-jsEIIZRnJWVvp-Asxk0_kqoagfXMO2WT9S5C4wN8Dj55B1d61-og0z5oOHU2-hR8e4DJw7tgPzVcuJhkbbddUkdoHUzvGr74rQzw1Tp1Dk6M3EZ98f2Owfp-vpo9Zsunh8VsuswaylHq7sFKSY0ppmWBuCG5JpWqTUNUQxnXuS5RrSpkpKmwaQpGlCwUynmtNVeooWNwNfS2wX_sdUxi4_fBdSsFYUXJMKWs7Cg0UE3wMQZtRBvsToaDwEj08kRvSvSmxCCvi1wPEevb307ZbkSVY0EEZqVoVc_d_MH9W_sFoHF-YA</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Opie, Simon</creator><creator>Verscharen, Daniel</creator><creator>Chen, Christopher H. K.</creator><creator>Owen, Christopher J.</creator><creator>Isenberg, Philip A.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0505-8546</orcidid><orcidid>https://orcid.org/0000-0003-4529-3620</orcidid><orcidid>https://orcid.org/0000-0002-0497-1096</orcidid><orcidid>https://orcid.org/0000-0002-5982-4667</orcidid><orcidid>https://orcid.org/0000-0002-2280-8807</orcidid></search><sort><creationdate>20221201</creationdate><title>Conditions for Proton Temperature Anisotropy to Drive Instabilities in the Solar Wind</title><author>Opie, Simon ; Verscharen, Daniel ; Chen, Christopher H. K. ; Owen, Christopher J. ; Isenberg, Philip A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-631ddae13136508f24e29dbfc2dc378e4e60bd90faf91fc572da5d048bee8d0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alfven waves</topic><topic>Anisotropy</topic><topic>Astrophysics</topic><topic>Heliosphere</topic><topic>Interplanetary turbulence</topic><topic>Magnetic fields</topic><topic>Plasma physics</topic><topic>Protons</topic><topic>Solar magnetic field</topic><topic>Solar Orbiter (ESA)</topic><topic>Solar orbits</topic><topic>Solar wind</topic><topic>Solar wind turbulence</topic><topic>Solar wind velocity</topic><topic>Space plasmas</topic><topic>Spacecraft</topic><topic>Thermodynamic equilibrium</topic><topic>Wavelengths</topic><topic>Wind speed</topic><topic>Wind velocities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Opie, Simon</creatorcontrib><creatorcontrib>Verscharen, Daniel</creatorcontrib><creatorcontrib>Chen, Christopher H. K.</creatorcontrib><creatorcontrib>Owen, Christopher J.</creatorcontrib><creatorcontrib>Isenberg, Philip A.</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Opie, Simon</au><au>Verscharen, Daniel</au><au>Chen, Christopher H. K.</au><au>Owen, Christopher J.</au><au>Isenberg, Philip A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conditions for Proton Temperature Anisotropy to Drive Instabilities in the Solar Wind</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>941</volume><issue>2</issue><spage>176</spage><pages>176-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Using high-resolution data from Solar Orbiter, we investigate the plasma conditions necessary for the proton temperature-anisotropy-driven mirror-mode and oblique firehose instabilities to occur in the solar wind. We find that the unstable plasma exhibits dependencies on the angle between the direction of the magnetic field and the bulk solar wind velocity which cannot be explained by the double-adiabatic expansion of the solar wind alone. The angle dependencies suggest that perpendicular heating in Alfvénic wind may be responsible. We quantify the occurrence rate of the two instabilities as a function of the length of unstable intervals as they are convected over the spacecraft. This analysis indicates that mirror-mode and oblique firehose instabilities require a spatial interval of length greater than 2–3 unstable wavelengths in order to relax the plasma into a marginally stable state and thus closer to thermodynamic equilibrium in the solar wind. Our analysis suggests that the conditions for these instabilities to act effectively vary locally on scales much shorter than the correlation length of solar wind turbulence.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ac982f</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0505-8546</orcidid><orcidid>https://orcid.org/0000-0003-4529-3620</orcidid><orcidid>https://orcid.org/0000-0002-0497-1096</orcidid><orcidid>https://orcid.org/0000-0002-5982-4667</orcidid><orcidid>https://orcid.org/0000-0002-2280-8807</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2022-12, Vol.941 (2), p.176 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_proquest_journals_2756713376 |
source | IOP Publishing Free Content; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Alfven waves Anisotropy Astrophysics Heliosphere Interplanetary turbulence Magnetic fields Plasma physics Protons Solar magnetic field Solar Orbiter (ESA) Solar orbits Solar wind Solar wind turbulence Solar wind velocity Space plasmas Spacecraft Thermodynamic equilibrium Wavelengths Wind speed Wind velocities |
title | Conditions for Proton Temperature Anisotropy to Drive Instabilities in the Solar Wind |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A52%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conditions%20for%20Proton%20Temperature%20Anisotropy%20to%20Drive%20Instabilities%20in%20the%20Solar%20Wind&rft.jtitle=The%20Astrophysical%20journal&rft.au=Opie,%20Simon&rft.date=2022-12-01&rft.volume=941&rft.issue=2&rft.spage=176&rft.pages=176-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ac982f&rft_dat=%3Cproquest_cross%3E2756713376%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2756713376&rft_id=info:pmid/&rfr_iscdi=true |