Conditions for Proton Temperature Anisotropy to Drive Instabilities in the Solar Wind

Using high-resolution data from Solar Orbiter, we investigate the plasma conditions necessary for the proton temperature-anisotropy-driven mirror-mode and oblique firehose instabilities to occur in the solar wind. We find that the unstable plasma exhibits dependencies on the angle between the direct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2022-12, Vol.941 (2), p.176
Hauptverfasser: Opie, Simon, Verscharen, Daniel, Chen, Christopher H. K., Owen, Christopher J., Isenberg, Philip A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 176
container_title The Astrophysical journal
container_volume 941
creator Opie, Simon
Verscharen, Daniel
Chen, Christopher H. K.
Owen, Christopher J.
Isenberg, Philip A.
description Using high-resolution data from Solar Orbiter, we investigate the plasma conditions necessary for the proton temperature-anisotropy-driven mirror-mode and oblique firehose instabilities to occur in the solar wind. We find that the unstable plasma exhibits dependencies on the angle between the direction of the magnetic field and the bulk solar wind velocity which cannot be explained by the double-adiabatic expansion of the solar wind alone. The angle dependencies suggest that perpendicular heating in Alfvénic wind may be responsible. We quantify the occurrence rate of the two instabilities as a function of the length of unstable intervals as they are convected over the spacecraft. This analysis indicates that mirror-mode and oblique firehose instabilities require a spatial interval of length greater than 2–3 unstable wavelengths in order to relax the plasma into a marginally stable state and thus closer to thermodynamic equilibrium in the solar wind. Our analysis suggests that the conditions for these instabilities to act effectively vary locally on scales much shorter than the correlation length of solar wind turbulence.
doi_str_mv 10.3847/1538-4357/ac982f
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2756713376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2756713376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-631ddae13136508f24e29dbfc2dc378e4e60bd90faf91fc572da5d048bee8d0c3</originalsourceid><addsrcrecordid>eNp1kM9LwzAYhoMoOKd3jwHxZl1-tE16HHPqYKDght5C2iSYsSU1yYT997ZU9KKn8IXnfb-PB4BLjG4pz9kEF5RnOS3YRDYVJ-YIjH6-jsEIIZRnJWVvp-Asxk0_kqoagfXMO2WT9S5C4wN8Dj55B1d61-og0z5oOHU2-hR8e4DJw7tgPzVcuJhkbbddUkdoHUzvGr74rQzw1Tp1Dk6M3EZ98f2Owfp-vpo9Zsunh8VsuswaylHq7sFKSY0ppmWBuCG5JpWqTUNUQxnXuS5RrSpkpKmwaQpGlCwUynmtNVeooWNwNfS2wX_sdUxi4_fBdSsFYUXJMKWs7Cg0UE3wMQZtRBvsToaDwEj08kRvSvSmxCCvi1wPEevb307ZbkSVY0EEZqVoVc_d_MH9W_sFoHF-YA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756713376</pqid></control><display><type>article</type><title>Conditions for Proton Temperature Anisotropy to Drive Instabilities in the Solar Wind</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Opie, Simon ; Verscharen, Daniel ; Chen, Christopher H. K. ; Owen, Christopher J. ; Isenberg, Philip A.</creator><creatorcontrib>Opie, Simon ; Verscharen, Daniel ; Chen, Christopher H. K. ; Owen, Christopher J. ; Isenberg, Philip A.</creatorcontrib><description>Using high-resolution data from Solar Orbiter, we investigate the plasma conditions necessary for the proton temperature-anisotropy-driven mirror-mode and oblique firehose instabilities to occur in the solar wind. We find that the unstable plasma exhibits dependencies on the angle between the direction of the magnetic field and the bulk solar wind velocity which cannot be explained by the double-adiabatic expansion of the solar wind alone. The angle dependencies suggest that perpendicular heating in Alfvénic wind may be responsible. We quantify the occurrence rate of the two instabilities as a function of the length of unstable intervals as they are convected over the spacecraft. This analysis indicates that mirror-mode and oblique firehose instabilities require a spatial interval of length greater than 2–3 unstable wavelengths in order to relax the plasma into a marginally stable state and thus closer to thermodynamic equilibrium in the solar wind. Our analysis suggests that the conditions for these instabilities to act effectively vary locally on scales much shorter than the correlation length of solar wind turbulence.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ac982f</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Alfven waves ; Anisotropy ; Astrophysics ; Heliosphere ; Interplanetary turbulence ; Magnetic fields ; Plasma physics ; Protons ; Solar magnetic field ; Solar Orbiter (ESA) ; Solar orbits ; Solar wind ; Solar wind turbulence ; Solar wind velocity ; Space plasmas ; Spacecraft ; Thermodynamic equilibrium ; Wavelengths ; Wind speed ; Wind velocities</subject><ispartof>The Astrophysical journal, 2022-12, Vol.941 (2), p.176</ispartof><rights>2022. The Author(s). Published by the American Astronomical Society.</rights><rights>2022. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-631ddae13136508f24e29dbfc2dc378e4e60bd90faf91fc572da5d048bee8d0c3</citedby><cites>FETCH-LOGICAL-c380t-631ddae13136508f24e29dbfc2dc378e4e60bd90faf91fc572da5d048bee8d0c3</cites><orcidid>0000-0003-0505-8546 ; 0000-0003-4529-3620 ; 0000-0002-0497-1096 ; 0000-0002-5982-4667 ; 0000-0002-2280-8807</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ac982f/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,27923,27924,38889,53866</link.rule.ids></links><search><creatorcontrib>Opie, Simon</creatorcontrib><creatorcontrib>Verscharen, Daniel</creatorcontrib><creatorcontrib>Chen, Christopher H. K.</creatorcontrib><creatorcontrib>Owen, Christopher J.</creatorcontrib><creatorcontrib>Isenberg, Philip A.</creatorcontrib><title>Conditions for Proton Temperature Anisotropy to Drive Instabilities in the Solar Wind</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Using high-resolution data from Solar Orbiter, we investigate the plasma conditions necessary for the proton temperature-anisotropy-driven mirror-mode and oblique firehose instabilities to occur in the solar wind. We find that the unstable plasma exhibits dependencies on the angle between the direction of the magnetic field and the bulk solar wind velocity which cannot be explained by the double-adiabatic expansion of the solar wind alone. The angle dependencies suggest that perpendicular heating in Alfvénic wind may be responsible. We quantify the occurrence rate of the two instabilities as a function of the length of unstable intervals as they are convected over the spacecraft. This analysis indicates that mirror-mode and oblique firehose instabilities require a spatial interval of length greater than 2–3 unstable wavelengths in order to relax the plasma into a marginally stable state and thus closer to thermodynamic equilibrium in the solar wind. Our analysis suggests that the conditions for these instabilities to act effectively vary locally on scales much shorter than the correlation length of solar wind turbulence.</description><subject>Alfven waves</subject><subject>Anisotropy</subject><subject>Astrophysics</subject><subject>Heliosphere</subject><subject>Interplanetary turbulence</subject><subject>Magnetic fields</subject><subject>Plasma physics</subject><subject>Protons</subject><subject>Solar magnetic field</subject><subject>Solar Orbiter (ESA)</subject><subject>Solar orbits</subject><subject>Solar wind</subject><subject>Solar wind turbulence</subject><subject>Solar wind velocity</subject><subject>Space plasmas</subject><subject>Spacecraft</subject><subject>Thermodynamic equilibrium</subject><subject>Wavelengths</subject><subject>Wind speed</subject><subject>Wind velocities</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kM9LwzAYhoMoOKd3jwHxZl1-tE16HHPqYKDght5C2iSYsSU1yYT997ZU9KKn8IXnfb-PB4BLjG4pz9kEF5RnOS3YRDYVJ-YIjH6-jsEIIZRnJWVvp-Asxk0_kqoagfXMO2WT9S5C4wN8Dj55B1d61-og0z5oOHU2-hR8e4DJw7tgPzVcuJhkbbddUkdoHUzvGr74rQzw1Tp1Dk6M3EZ98f2Owfp-vpo9Zsunh8VsuswaylHq7sFKSY0ppmWBuCG5JpWqTUNUQxnXuS5RrSpkpKmwaQpGlCwUynmtNVeooWNwNfS2wX_sdUxi4_fBdSsFYUXJMKWs7Cg0UE3wMQZtRBvsToaDwEj08kRvSvSmxCCvi1wPEevb307ZbkSVY0EEZqVoVc_d_MH9W_sFoHF-YA</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Opie, Simon</creator><creator>Verscharen, Daniel</creator><creator>Chen, Christopher H. K.</creator><creator>Owen, Christopher J.</creator><creator>Isenberg, Philip A.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0505-8546</orcidid><orcidid>https://orcid.org/0000-0003-4529-3620</orcidid><orcidid>https://orcid.org/0000-0002-0497-1096</orcidid><orcidid>https://orcid.org/0000-0002-5982-4667</orcidid><orcidid>https://orcid.org/0000-0002-2280-8807</orcidid></search><sort><creationdate>20221201</creationdate><title>Conditions for Proton Temperature Anisotropy to Drive Instabilities in the Solar Wind</title><author>Opie, Simon ; Verscharen, Daniel ; Chen, Christopher H. K. ; Owen, Christopher J. ; Isenberg, Philip A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-631ddae13136508f24e29dbfc2dc378e4e60bd90faf91fc572da5d048bee8d0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alfven waves</topic><topic>Anisotropy</topic><topic>Astrophysics</topic><topic>Heliosphere</topic><topic>Interplanetary turbulence</topic><topic>Magnetic fields</topic><topic>Plasma physics</topic><topic>Protons</topic><topic>Solar magnetic field</topic><topic>Solar Orbiter (ESA)</topic><topic>Solar orbits</topic><topic>Solar wind</topic><topic>Solar wind turbulence</topic><topic>Solar wind velocity</topic><topic>Space plasmas</topic><topic>Spacecraft</topic><topic>Thermodynamic equilibrium</topic><topic>Wavelengths</topic><topic>Wind speed</topic><topic>Wind velocities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Opie, Simon</creatorcontrib><creatorcontrib>Verscharen, Daniel</creatorcontrib><creatorcontrib>Chen, Christopher H. K.</creatorcontrib><creatorcontrib>Owen, Christopher J.</creatorcontrib><creatorcontrib>Isenberg, Philip A.</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Opie, Simon</au><au>Verscharen, Daniel</au><au>Chen, Christopher H. K.</au><au>Owen, Christopher J.</au><au>Isenberg, Philip A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conditions for Proton Temperature Anisotropy to Drive Instabilities in the Solar Wind</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>941</volume><issue>2</issue><spage>176</spage><pages>176-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Using high-resolution data from Solar Orbiter, we investigate the plasma conditions necessary for the proton temperature-anisotropy-driven mirror-mode and oblique firehose instabilities to occur in the solar wind. We find that the unstable plasma exhibits dependencies on the angle between the direction of the magnetic field and the bulk solar wind velocity which cannot be explained by the double-adiabatic expansion of the solar wind alone. The angle dependencies suggest that perpendicular heating in Alfvénic wind may be responsible. We quantify the occurrence rate of the two instabilities as a function of the length of unstable intervals as they are convected over the spacecraft. This analysis indicates that mirror-mode and oblique firehose instabilities require a spatial interval of length greater than 2–3 unstable wavelengths in order to relax the plasma into a marginally stable state and thus closer to thermodynamic equilibrium in the solar wind. Our analysis suggests that the conditions for these instabilities to act effectively vary locally on scales much shorter than the correlation length of solar wind turbulence.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ac982f</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0505-8546</orcidid><orcidid>https://orcid.org/0000-0003-4529-3620</orcidid><orcidid>https://orcid.org/0000-0002-0497-1096</orcidid><orcidid>https://orcid.org/0000-0002-5982-4667</orcidid><orcidid>https://orcid.org/0000-0002-2280-8807</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2022-12, Vol.941 (2), p.176
issn 0004-637X
1538-4357
language eng
recordid cdi_proquest_journals_2756713376
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Alfven waves
Anisotropy
Astrophysics
Heliosphere
Interplanetary turbulence
Magnetic fields
Plasma physics
Protons
Solar magnetic field
Solar Orbiter (ESA)
Solar orbits
Solar wind
Solar wind turbulence
Solar wind velocity
Space plasmas
Spacecraft
Thermodynamic equilibrium
Wavelengths
Wind speed
Wind velocities
title Conditions for Proton Temperature Anisotropy to Drive Instabilities in the Solar Wind
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A52%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conditions%20for%20Proton%20Temperature%20Anisotropy%20to%20Drive%20Instabilities%20in%20the%20Solar%20Wind&rft.jtitle=The%20Astrophysical%20journal&rft.au=Opie,%20Simon&rft.date=2022-12-01&rft.volume=941&rft.issue=2&rft.spage=176&rft.pages=176-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ac982f&rft_dat=%3Cproquest_cross%3E2756713376%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2756713376&rft_id=info:pmid/&rfr_iscdi=true