Effect of Large Uniaxial Stress on the Thermoelectric Properties of Microcrystalline Silicon Thin Films
This study reports on the behaviour of the thermoelectric properties of n- and p-type hydrogenated microcrystalline silicon thin films (µc-Si: H) as a function of applied uniaxial stress up to ±1.7%. µc-Si: H thin films were deposited via plasma enhanced chemical vapour deposition and thermoelectric...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2022-12, Vol.11 (24), p.4085 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 24 |
container_start_page | 4085 |
container_title | Electronics (Basel) |
container_volume | 11 |
creator | Acosta, Edwin Smirnov, Vladimir Szabo, Peter S. B. Pillajo, Christian De la Cadena, Erick Bennett, Nick S. |
description | This study reports on the behaviour of the thermoelectric properties of n- and p-type hydrogenated microcrystalline silicon thin films (µc-Si: H) as a function of applied uniaxial stress up to ±1.7%. µc-Si: H thin films were deposited via plasma enhanced chemical vapour deposition and thermoelectric properties were obtained through annealing at 200 °C (350 °C) for n-(p-) type samples, before the bending experiments. Tensile (compressive) stress was effective to increase the electrical conductivity of n-(p-) type samples. Likewise, stress induced changes in the Seebeck coefficient, however, showing an improvement only in electron-doped films under compressive stress. Overall, the addition of elevated temperature to the bending experiments resulted in a decrease in the mechanical stability of the films. These trends did not produce a significant enhancement of the overall thermoelectric power factor, rather it was largely preserved in all cases. |
doi_str_mv | 10.3390/electronics11244085 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2756681150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745598725</galeid><sourcerecordid>A745598725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-f00b32120549d88a292b6911123c2989a463f954031f9be87bdf45933ecff8573</originalsourceid><addsrcrecordid>eNptkU1rwzAMhs3YYKXrL9jFsHM6f8SJfSyl3QYdG7Q9B8eVW5ck7uwU1n8_l-yww6SDhNCjV0IIPVIy5VyRZ2jA9MF3zkRKWZ4TKW7QiJFSZYopdvsnv0eTGI8kmaJccjJC-4W1Ccfe4pUOe8Dbzulvpxu87gPEiH2H-wPgzQFC6wcpZ_Bn8CcIvYN4Jd-dCd6ES-x107gO8No1ziRyc3AdXrqmjQ_ozuomwuQ3jtF2udjMX7PVx8vbfLbKDKe0zywhNWeUEZGrnZQ67VwXiqa7uGFKKp0X3CqRE06tqkGW9c7mQnEOxlopSj5GT8PcU_BfZ4h9dfTn0CXJipWiKCSlgqSu6dC11w1UrrO-D9ok30F7XRysS_VZmQuhZMlEAvgApENjDGCrU3CtDpeKkur6heqfL_AfCel9MQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756681150</pqid></control><display><type>article</type><title>Effect of Large Uniaxial Stress on the Thermoelectric Properties of Microcrystalline Silicon Thin Films</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Acosta, Edwin ; Smirnov, Vladimir ; Szabo, Peter S. B. ; Pillajo, Christian ; De la Cadena, Erick ; Bennett, Nick S.</creator><creatorcontrib>Acosta, Edwin ; Smirnov, Vladimir ; Szabo, Peter S. B. ; Pillajo, Christian ; De la Cadena, Erick ; Bennett, Nick S.</creatorcontrib><description>This study reports on the behaviour of the thermoelectric properties of n- and p-type hydrogenated microcrystalline silicon thin films (µc-Si: H) as a function of applied uniaxial stress up to ±1.7%. µc-Si: H thin films were deposited via plasma enhanced chemical vapour deposition and thermoelectric properties were obtained through annealing at 200 °C (350 °C) for n-(p-) type samples, before the bending experiments. Tensile (compressive) stress was effective to increase the electrical conductivity of n-(p-) type samples. Likewise, stress induced changes in the Seebeck coefficient, however, showing an improvement only in electron-doped films under compressive stress. Overall, the addition of elevated temperature to the bending experiments resulted in a decrease in the mechanical stability of the films. These trends did not produce a significant enhancement of the overall thermoelectric power factor, rather it was largely preserved in all cases.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics11244085</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Analysis ; Annealing ; Bending ; Composition ; Compressive properties ; Dielectric films ; Doped films ; Electric properties ; Electrical resistivity ; Glass substrates ; High temperature ; Mechanical properties ; Methods ; Plasma enhanced chemical vapor deposition ; Power factor ; Seebeck effect ; Semiconductors ; Silicon ; Silicon films ; Temperature ; Thermal properties ; Thermoelectricity ; Thin films</subject><ispartof>Electronics (Basel), 2022-12, Vol.11 (24), p.4085</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-f00b32120549d88a292b6911123c2989a463f954031f9be87bdf45933ecff8573</cites><orcidid>0000-0003-3122-4544</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Acosta, Edwin</creatorcontrib><creatorcontrib>Smirnov, Vladimir</creatorcontrib><creatorcontrib>Szabo, Peter S. B.</creatorcontrib><creatorcontrib>Pillajo, Christian</creatorcontrib><creatorcontrib>De la Cadena, Erick</creatorcontrib><creatorcontrib>Bennett, Nick S.</creatorcontrib><title>Effect of Large Uniaxial Stress on the Thermoelectric Properties of Microcrystalline Silicon Thin Films</title><title>Electronics (Basel)</title><description>This study reports on the behaviour of the thermoelectric properties of n- and p-type hydrogenated microcrystalline silicon thin films (µc-Si: H) as a function of applied uniaxial stress up to ±1.7%. µc-Si: H thin films were deposited via plasma enhanced chemical vapour deposition and thermoelectric properties were obtained through annealing at 200 °C (350 °C) for n-(p-) type samples, before the bending experiments. Tensile (compressive) stress was effective to increase the electrical conductivity of n-(p-) type samples. Likewise, stress induced changes in the Seebeck coefficient, however, showing an improvement only in electron-doped films under compressive stress. Overall, the addition of elevated temperature to the bending experiments resulted in a decrease in the mechanical stability of the films. These trends did not produce a significant enhancement of the overall thermoelectric power factor, rather it was largely preserved in all cases.</description><subject>Analysis</subject><subject>Annealing</subject><subject>Bending</subject><subject>Composition</subject><subject>Compressive properties</subject><subject>Dielectric films</subject><subject>Doped films</subject><subject>Electric properties</subject><subject>Electrical resistivity</subject><subject>Glass substrates</subject><subject>High temperature</subject><subject>Mechanical properties</subject><subject>Methods</subject><subject>Plasma enhanced chemical vapor deposition</subject><subject>Power factor</subject><subject>Seebeck effect</subject><subject>Semiconductors</subject><subject>Silicon</subject><subject>Silicon films</subject><subject>Temperature</subject><subject>Thermal properties</subject><subject>Thermoelectricity</subject><subject>Thin films</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptkU1rwzAMhs3YYKXrL9jFsHM6f8SJfSyl3QYdG7Q9B8eVW5ck7uwU1n8_l-yww6SDhNCjV0IIPVIy5VyRZ2jA9MF3zkRKWZ4TKW7QiJFSZYopdvsnv0eTGI8kmaJccjJC-4W1Ccfe4pUOe8Dbzulvpxu87gPEiH2H-wPgzQFC6wcpZ_Bn8CcIvYN4Jd-dCd6ES-x107gO8No1ziRyc3AdXrqmjQ_ozuomwuQ3jtF2udjMX7PVx8vbfLbKDKe0zywhNWeUEZGrnZQ67VwXiqa7uGFKKp0X3CqRE06tqkGW9c7mQnEOxlopSj5GT8PcU_BfZ4h9dfTn0CXJipWiKCSlgqSu6dC11w1UrrO-D9ok30F7XRysS_VZmQuhZMlEAvgApENjDGCrU3CtDpeKkur6heqfL_AfCel9MQ</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Acosta, Edwin</creator><creator>Smirnov, Vladimir</creator><creator>Szabo, Peter S. B.</creator><creator>Pillajo, Christian</creator><creator>De la Cadena, Erick</creator><creator>Bennett, Nick S.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-3122-4544</orcidid></search><sort><creationdate>20221201</creationdate><title>Effect of Large Uniaxial Stress on the Thermoelectric Properties of Microcrystalline Silicon Thin Films</title><author>Acosta, Edwin ; Smirnov, Vladimir ; Szabo, Peter S. B. ; Pillajo, Christian ; De la Cadena, Erick ; Bennett, Nick S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-f00b32120549d88a292b6911123c2989a463f954031f9be87bdf45933ecff8573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Annealing</topic><topic>Bending</topic><topic>Composition</topic><topic>Compressive properties</topic><topic>Dielectric films</topic><topic>Doped films</topic><topic>Electric properties</topic><topic>Electrical resistivity</topic><topic>Glass substrates</topic><topic>High temperature</topic><topic>Mechanical properties</topic><topic>Methods</topic><topic>Plasma enhanced chemical vapor deposition</topic><topic>Power factor</topic><topic>Seebeck effect</topic><topic>Semiconductors</topic><topic>Silicon</topic><topic>Silicon films</topic><topic>Temperature</topic><topic>Thermal properties</topic><topic>Thermoelectricity</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Acosta, Edwin</creatorcontrib><creatorcontrib>Smirnov, Vladimir</creatorcontrib><creatorcontrib>Szabo, Peter S. B.</creatorcontrib><creatorcontrib>Pillajo, Christian</creatorcontrib><creatorcontrib>De la Cadena, Erick</creatorcontrib><creatorcontrib>Bennett, Nick S.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Acosta, Edwin</au><au>Smirnov, Vladimir</au><au>Szabo, Peter S. B.</au><au>Pillajo, Christian</au><au>De la Cadena, Erick</au><au>Bennett, Nick S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Large Uniaxial Stress on the Thermoelectric Properties of Microcrystalline Silicon Thin Films</atitle><jtitle>Electronics (Basel)</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>11</volume><issue>24</issue><spage>4085</spage><pages>4085-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>This study reports on the behaviour of the thermoelectric properties of n- and p-type hydrogenated microcrystalline silicon thin films (µc-Si: H) as a function of applied uniaxial stress up to ±1.7%. µc-Si: H thin films were deposited via plasma enhanced chemical vapour deposition and thermoelectric properties were obtained through annealing at 200 °C (350 °C) for n-(p-) type samples, before the bending experiments. Tensile (compressive) stress was effective to increase the electrical conductivity of n-(p-) type samples. Likewise, stress induced changes in the Seebeck coefficient, however, showing an improvement only in electron-doped films under compressive stress. Overall, the addition of elevated temperature to the bending experiments resulted in a decrease in the mechanical stability of the films. These trends did not produce a significant enhancement of the overall thermoelectric power factor, rather it was largely preserved in all cases.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics11244085</doi><orcidid>https://orcid.org/0000-0003-3122-4544</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2022-12, Vol.11 (24), p.4085 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2756681150 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Analysis Annealing Bending Composition Compressive properties Dielectric films Doped films Electric properties Electrical resistivity Glass substrates High temperature Mechanical properties Methods Plasma enhanced chemical vapor deposition Power factor Seebeck effect Semiconductors Silicon Silicon films Temperature Thermal properties Thermoelectricity Thin films |
title | Effect of Large Uniaxial Stress on the Thermoelectric Properties of Microcrystalline Silicon Thin Films |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T18%3A26%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Large%20Uniaxial%20Stress%20on%20the%20Thermoelectric%20Properties%20of%20Microcrystalline%20Silicon%20Thin%20Films&rft.jtitle=Electronics%20(Basel)&rft.au=Acosta,%20Edwin&rft.date=2022-12-01&rft.volume=11&rft.issue=24&rft.spage=4085&rft.pages=4085-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics11244085&rft_dat=%3Cgale_proqu%3EA745598725%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2756681150&rft_id=info:pmid/&rft_galeid=A745598725&rfr_iscdi=true |