Effect of Large Uniaxial Stress on the Thermoelectric Properties of Microcrystalline Silicon Thin Films

This study reports on the behaviour of the thermoelectric properties of n- and p-type hydrogenated microcrystalline silicon thin films (µc-Si: H) as a function of applied uniaxial stress up to ±1.7%. µc-Si: H thin films were deposited via plasma enhanced chemical vapour deposition and thermoelectric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2022-12, Vol.11 (24), p.4085
Hauptverfasser: Acosta, Edwin, Smirnov, Vladimir, Szabo, Peter S. B., Pillajo, Christian, De la Cadena, Erick, Bennett, Nick S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 24
container_start_page 4085
container_title Electronics (Basel)
container_volume 11
creator Acosta, Edwin
Smirnov, Vladimir
Szabo, Peter S. B.
Pillajo, Christian
De la Cadena, Erick
Bennett, Nick S.
description This study reports on the behaviour of the thermoelectric properties of n- and p-type hydrogenated microcrystalline silicon thin films (µc-Si: H) as a function of applied uniaxial stress up to ±1.7%. µc-Si: H thin films were deposited via plasma enhanced chemical vapour deposition and thermoelectric properties were obtained through annealing at 200 °C (350 °C) for n-(p-) type samples, before the bending experiments. Tensile (compressive) stress was effective to increase the electrical conductivity of n-(p-) type samples. Likewise, stress induced changes in the Seebeck coefficient, however, showing an improvement only in electron-doped films under compressive stress. Overall, the addition of elevated temperature to the bending experiments resulted in a decrease in the mechanical stability of the films. These trends did not produce a significant enhancement of the overall thermoelectric power factor, rather it was largely preserved in all cases.
doi_str_mv 10.3390/electronics11244085
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2756681150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745598725</galeid><sourcerecordid>A745598725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-f00b32120549d88a292b6911123c2989a463f954031f9be87bdf45933ecff8573</originalsourceid><addsrcrecordid>eNptkU1rwzAMhs3YYKXrL9jFsHM6f8SJfSyl3QYdG7Q9B8eVW5ck7uwU1n8_l-yww6SDhNCjV0IIPVIy5VyRZ2jA9MF3zkRKWZ4TKW7QiJFSZYopdvsnv0eTGI8kmaJccjJC-4W1Ccfe4pUOe8Dbzulvpxu87gPEiH2H-wPgzQFC6wcpZ_Bn8CcIvYN4Jd-dCd6ES-x107gO8No1ziRyc3AdXrqmjQ_ozuomwuQ3jtF2udjMX7PVx8vbfLbKDKe0zywhNWeUEZGrnZQ67VwXiqa7uGFKKp0X3CqRE06tqkGW9c7mQnEOxlopSj5GT8PcU_BfZ4h9dfTn0CXJipWiKCSlgqSu6dC11w1UrrO-D9ok30F7XRysS_VZmQuhZMlEAvgApENjDGCrU3CtDpeKkur6heqfL_AfCel9MQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756681150</pqid></control><display><type>article</type><title>Effect of Large Uniaxial Stress on the Thermoelectric Properties of Microcrystalline Silicon Thin Films</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Acosta, Edwin ; Smirnov, Vladimir ; Szabo, Peter S. B. ; Pillajo, Christian ; De la Cadena, Erick ; Bennett, Nick S.</creator><creatorcontrib>Acosta, Edwin ; Smirnov, Vladimir ; Szabo, Peter S. B. ; Pillajo, Christian ; De la Cadena, Erick ; Bennett, Nick S.</creatorcontrib><description>This study reports on the behaviour of the thermoelectric properties of n- and p-type hydrogenated microcrystalline silicon thin films (µc-Si: H) as a function of applied uniaxial stress up to ±1.7%. µc-Si: H thin films were deposited via plasma enhanced chemical vapour deposition and thermoelectric properties were obtained through annealing at 200 °C (350 °C) for n-(p-) type samples, before the bending experiments. Tensile (compressive) stress was effective to increase the electrical conductivity of n-(p-) type samples. Likewise, stress induced changes in the Seebeck coefficient, however, showing an improvement only in electron-doped films under compressive stress. Overall, the addition of elevated temperature to the bending experiments resulted in a decrease in the mechanical stability of the films. These trends did not produce a significant enhancement of the overall thermoelectric power factor, rather it was largely preserved in all cases.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics11244085</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Analysis ; Annealing ; Bending ; Composition ; Compressive properties ; Dielectric films ; Doped films ; Electric properties ; Electrical resistivity ; Glass substrates ; High temperature ; Mechanical properties ; Methods ; Plasma enhanced chemical vapor deposition ; Power factor ; Seebeck effect ; Semiconductors ; Silicon ; Silicon films ; Temperature ; Thermal properties ; Thermoelectricity ; Thin films</subject><ispartof>Electronics (Basel), 2022-12, Vol.11 (24), p.4085</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-f00b32120549d88a292b6911123c2989a463f954031f9be87bdf45933ecff8573</cites><orcidid>0000-0003-3122-4544</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Acosta, Edwin</creatorcontrib><creatorcontrib>Smirnov, Vladimir</creatorcontrib><creatorcontrib>Szabo, Peter S. B.</creatorcontrib><creatorcontrib>Pillajo, Christian</creatorcontrib><creatorcontrib>De la Cadena, Erick</creatorcontrib><creatorcontrib>Bennett, Nick S.</creatorcontrib><title>Effect of Large Uniaxial Stress on the Thermoelectric Properties of Microcrystalline Silicon Thin Films</title><title>Electronics (Basel)</title><description>This study reports on the behaviour of the thermoelectric properties of n- and p-type hydrogenated microcrystalline silicon thin films (µc-Si: H) as a function of applied uniaxial stress up to ±1.7%. µc-Si: H thin films were deposited via plasma enhanced chemical vapour deposition and thermoelectric properties were obtained through annealing at 200 °C (350 °C) for n-(p-) type samples, before the bending experiments. Tensile (compressive) stress was effective to increase the electrical conductivity of n-(p-) type samples. Likewise, stress induced changes in the Seebeck coefficient, however, showing an improvement only in electron-doped films under compressive stress. Overall, the addition of elevated temperature to the bending experiments resulted in a decrease in the mechanical stability of the films. These trends did not produce a significant enhancement of the overall thermoelectric power factor, rather it was largely preserved in all cases.</description><subject>Analysis</subject><subject>Annealing</subject><subject>Bending</subject><subject>Composition</subject><subject>Compressive properties</subject><subject>Dielectric films</subject><subject>Doped films</subject><subject>Electric properties</subject><subject>Electrical resistivity</subject><subject>Glass substrates</subject><subject>High temperature</subject><subject>Mechanical properties</subject><subject>Methods</subject><subject>Plasma enhanced chemical vapor deposition</subject><subject>Power factor</subject><subject>Seebeck effect</subject><subject>Semiconductors</subject><subject>Silicon</subject><subject>Silicon films</subject><subject>Temperature</subject><subject>Thermal properties</subject><subject>Thermoelectricity</subject><subject>Thin films</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptkU1rwzAMhs3YYKXrL9jFsHM6f8SJfSyl3QYdG7Q9B8eVW5ck7uwU1n8_l-yww6SDhNCjV0IIPVIy5VyRZ2jA9MF3zkRKWZ4TKW7QiJFSZYopdvsnv0eTGI8kmaJccjJC-4W1Ccfe4pUOe8Dbzulvpxu87gPEiH2H-wPgzQFC6wcpZ_Bn8CcIvYN4Jd-dCd6ES-x107gO8No1ziRyc3AdXrqmjQ_ozuomwuQ3jtF2udjMX7PVx8vbfLbKDKe0zywhNWeUEZGrnZQ67VwXiqa7uGFKKp0X3CqRE06tqkGW9c7mQnEOxlopSj5GT8PcU_BfZ4h9dfTn0CXJipWiKCSlgqSu6dC11w1UrrO-D9ok30F7XRysS_VZmQuhZMlEAvgApENjDGCrU3CtDpeKkur6heqfL_AfCel9MQ</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Acosta, Edwin</creator><creator>Smirnov, Vladimir</creator><creator>Szabo, Peter S. B.</creator><creator>Pillajo, Christian</creator><creator>De la Cadena, Erick</creator><creator>Bennett, Nick S.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-3122-4544</orcidid></search><sort><creationdate>20221201</creationdate><title>Effect of Large Uniaxial Stress on the Thermoelectric Properties of Microcrystalline Silicon Thin Films</title><author>Acosta, Edwin ; Smirnov, Vladimir ; Szabo, Peter S. B. ; Pillajo, Christian ; De la Cadena, Erick ; Bennett, Nick S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-f00b32120549d88a292b6911123c2989a463f954031f9be87bdf45933ecff8573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Annealing</topic><topic>Bending</topic><topic>Composition</topic><topic>Compressive properties</topic><topic>Dielectric films</topic><topic>Doped films</topic><topic>Electric properties</topic><topic>Electrical resistivity</topic><topic>Glass substrates</topic><topic>High temperature</topic><topic>Mechanical properties</topic><topic>Methods</topic><topic>Plasma enhanced chemical vapor deposition</topic><topic>Power factor</topic><topic>Seebeck effect</topic><topic>Semiconductors</topic><topic>Silicon</topic><topic>Silicon films</topic><topic>Temperature</topic><topic>Thermal properties</topic><topic>Thermoelectricity</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Acosta, Edwin</creatorcontrib><creatorcontrib>Smirnov, Vladimir</creatorcontrib><creatorcontrib>Szabo, Peter S. B.</creatorcontrib><creatorcontrib>Pillajo, Christian</creatorcontrib><creatorcontrib>De la Cadena, Erick</creatorcontrib><creatorcontrib>Bennett, Nick S.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Acosta, Edwin</au><au>Smirnov, Vladimir</au><au>Szabo, Peter S. B.</au><au>Pillajo, Christian</au><au>De la Cadena, Erick</au><au>Bennett, Nick S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Large Uniaxial Stress on the Thermoelectric Properties of Microcrystalline Silicon Thin Films</atitle><jtitle>Electronics (Basel)</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>11</volume><issue>24</issue><spage>4085</spage><pages>4085-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>This study reports on the behaviour of the thermoelectric properties of n- and p-type hydrogenated microcrystalline silicon thin films (µc-Si: H) as a function of applied uniaxial stress up to ±1.7%. µc-Si: H thin films were deposited via plasma enhanced chemical vapour deposition and thermoelectric properties were obtained through annealing at 200 °C (350 °C) for n-(p-) type samples, before the bending experiments. Tensile (compressive) stress was effective to increase the electrical conductivity of n-(p-) type samples. Likewise, stress induced changes in the Seebeck coefficient, however, showing an improvement only in electron-doped films under compressive stress. Overall, the addition of elevated temperature to the bending experiments resulted in a decrease in the mechanical stability of the films. These trends did not produce a significant enhancement of the overall thermoelectric power factor, rather it was largely preserved in all cases.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics11244085</doi><orcidid>https://orcid.org/0000-0003-3122-4544</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2022-12, Vol.11 (24), p.4085
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_2756681150
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Analysis
Annealing
Bending
Composition
Compressive properties
Dielectric films
Doped films
Electric properties
Electrical resistivity
Glass substrates
High temperature
Mechanical properties
Methods
Plasma enhanced chemical vapor deposition
Power factor
Seebeck effect
Semiconductors
Silicon
Silicon films
Temperature
Thermal properties
Thermoelectricity
Thin films
title Effect of Large Uniaxial Stress on the Thermoelectric Properties of Microcrystalline Silicon Thin Films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T18%3A26%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Large%20Uniaxial%20Stress%20on%20the%20Thermoelectric%20Properties%20of%20Microcrystalline%20Silicon%20Thin%20Films&rft.jtitle=Electronics%20(Basel)&rft.au=Acosta,%20Edwin&rft.date=2022-12-01&rft.volume=11&rft.issue=24&rft.spage=4085&rft.pages=4085-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics11244085&rft_dat=%3Cgale_proqu%3EA745598725%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2756681150&rft_id=info:pmid/&rft_galeid=A745598725&rfr_iscdi=true