Detection of maritime traffic anomalies using Satellite-AIS and multisensory satellite imageries: Application to the 2021 Suez Canal obstruction

This study summarises the scenario of maritime traffic anomalies, like the increased congestion and U-turn of ships caused by the ship grounding in the Suez Canal in March 2021. Here, satellite automatic identification system based ship trajectories, and Sentinel-1 and Sentinel-2 images based ship p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of navigation 2022-09, Vol.75 (5), p.1082-1099
Hauptverfasser: Harun-Al-Rashid, Ahmed, Yang, Chan-Su, Shin, Dae-Woon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1099
container_issue 5
container_start_page 1082
container_title Journal of navigation
container_volume 75
creator Harun-Al-Rashid, Ahmed
Yang, Chan-Su
Shin, Dae-Woon
description This study summarises the scenario of maritime traffic anomalies, like the increased congestion and U-turn of ships caused by the ship grounding in the Suez Canal in March 2021. Here, satellite automatic identification system based ship trajectories, and Sentinel-1 and Sentinel-2 images based ship positions are analysed after subdividing the study area into seas, lakes and canals. The results show that the blockage affected the maritime traffic for more than three weeks, waiting ship numbers increased from 5 to 122, and daily one to three ships made a U-turn between 23 and 31 March in the Gulf of Suez. Ship density also increased to more than double in Bitter Lakes with a minimum waiting time of 7 days. Hence, to avoid such prolonged waiting of ships, we propose a warning method based on the sharp speed decrease rate, U-turn and congestion.
doi_str_mv 10.1017/S0373463322000364
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2756582668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0373463322000364</cupid><sourcerecordid>2756582668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-746baa995c21039506ceeef59f2368cfc06014cc8071c4fb05c82165ab1c42953</originalsourceid><addsrcrecordid>eNp1UMlOwzAQtRBIlMIHcLPEOeAldhJuVdkqIXEInCPHHRdXSRxs51C-gk8mXRAHxGk0esu8eQhdUnJNCc1uSsIznkrOGSOEcJkeoQlNZZFkWS6O0WQLJ1v8FJ2FsB45eZqLCfq6gwg6WtdhZ3CrvI22BRy9MsZqrDrXqsZCwEOw3QqXKkLT2AjJbFGO6BK3QxNtgC44v8HhB8a2VSvwo_AWz_q-sVrtbkSH4ztgRhjF5QCfeK461WBXh-iHXYxzdGJUE-DiMKfo7eH-df6UPL88Luaz50SzNItJlspaqaIQmlHCC0GkBgAjCsO4zLXRRBKaap2TjOrU1ETonFEpVD2urBB8iq72vr13HwOEWK3d4McwoWKZkCJnUuYji-5Z2rsQPJiq9-NrflNRUm2Lr_4UP2r4QaPa2tvlCn6t_1d9Ayi5hkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756582668</pqid></control><display><type>article</type><title>Detection of maritime traffic anomalies using Satellite-AIS and multisensory satellite imageries: Application to the 2021 Suez Canal obstruction</title><source>Cambridge University Press Journals Complete</source><creator>Harun-Al-Rashid, Ahmed ; Yang, Chan-Su ; Shin, Dae-Woon</creator><creatorcontrib>Harun-Al-Rashid, Ahmed ; Yang, Chan-Su ; Shin, Dae-Woon</creatorcontrib><description>This study summarises the scenario of maritime traffic anomalies, like the increased congestion and U-turn of ships caused by the ship grounding in the Suez Canal in March 2021. Here, satellite automatic identification system based ship trajectories, and Sentinel-1 and Sentinel-2 images based ship positions are analysed after subdividing the study area into seas, lakes and canals. The results show that the blockage affected the maritime traffic for more than three weeks, waiting ship numbers increased from 5 to 122, and daily one to three ships made a U-turn between 23 and 31 March in the Gulf of Suez. Ship density also increased to more than double in Bitter Lakes with a minimum waiting time of 7 days. Hence, to avoid such prolonged waiting of ships, we propose a warning method based on the sharp speed decrease rate, U-turn and congestion.</description><identifier>ISSN: 0373-4633</identifier><identifier>EISSN: 1469-7785</identifier><identifier>DOI: 10.1017/S0373463322000364</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Alliances ; Anomalies ; Canals ; Container ships ; Interocean canals ; Lakes ; Maritime satellites ; Ports ; Satellites ; Ships ; Traffic congestion</subject><ispartof>Journal of navigation, 2022-09, Vol.75 (5), p.1082-1099</ispartof><rights>Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Royal Institute of Navigation</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c247t-746baa995c21039506ceeef59f2368cfc06014cc8071c4fb05c82165ab1c42953</citedby><cites>FETCH-LOGICAL-c247t-746baa995c21039506ceeef59f2368cfc06014cc8071c4fb05c82165ab1c42953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0373463322000364/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Harun-Al-Rashid, Ahmed</creatorcontrib><creatorcontrib>Yang, Chan-Su</creatorcontrib><creatorcontrib>Shin, Dae-Woon</creatorcontrib><title>Detection of maritime traffic anomalies using Satellite-AIS and multisensory satellite imageries: Application to the 2021 Suez Canal obstruction</title><title>Journal of navigation</title><addtitle>J. Navigation</addtitle><description>This study summarises the scenario of maritime traffic anomalies, like the increased congestion and U-turn of ships caused by the ship grounding in the Suez Canal in March 2021. Here, satellite automatic identification system based ship trajectories, and Sentinel-1 and Sentinel-2 images based ship positions are analysed after subdividing the study area into seas, lakes and canals. The results show that the blockage affected the maritime traffic for more than three weeks, waiting ship numbers increased from 5 to 122, and daily one to three ships made a U-turn between 23 and 31 March in the Gulf of Suez. Ship density also increased to more than double in Bitter Lakes with a minimum waiting time of 7 days. Hence, to avoid such prolonged waiting of ships, we propose a warning method based on the sharp speed decrease rate, U-turn and congestion.</description><subject>Alliances</subject><subject>Anomalies</subject><subject>Canals</subject><subject>Container ships</subject><subject>Interocean canals</subject><subject>Lakes</subject><subject>Maritime satellites</subject><subject>Ports</subject><subject>Satellites</subject><subject>Ships</subject><subject>Traffic congestion</subject><issn>0373-4633</issn><issn>1469-7785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1UMlOwzAQtRBIlMIHcLPEOeAldhJuVdkqIXEInCPHHRdXSRxs51C-gk8mXRAHxGk0esu8eQhdUnJNCc1uSsIznkrOGSOEcJkeoQlNZZFkWS6O0WQLJ1v8FJ2FsB45eZqLCfq6gwg6WtdhZ3CrvI22BRy9MsZqrDrXqsZCwEOw3QqXKkLT2AjJbFGO6BK3QxNtgC44v8HhB8a2VSvwo_AWz_q-sVrtbkSH4ztgRhjF5QCfeK461WBXh-iHXYxzdGJUE-DiMKfo7eH-df6UPL88Luaz50SzNItJlspaqaIQmlHCC0GkBgAjCsO4zLXRRBKaap2TjOrU1ETonFEpVD2urBB8iq72vr13HwOEWK3d4McwoWKZkCJnUuYji-5Z2rsQPJiq9-NrflNRUm2Lr_4UP2r4QaPa2tvlCn6t_1d9Ayi5hkA</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Harun-Al-Rashid, Ahmed</creator><creator>Yang, Chan-Su</creator><creator>Shin, Dae-Woon</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>202209</creationdate><title>Detection of maritime traffic anomalies using Satellite-AIS and multisensory satellite imageries: Application to the 2021 Suez Canal obstruction</title><author>Harun-Al-Rashid, Ahmed ; Yang, Chan-Su ; Shin, Dae-Woon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-746baa995c21039506ceeef59f2368cfc06014cc8071c4fb05c82165ab1c42953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alliances</topic><topic>Anomalies</topic><topic>Canals</topic><topic>Container ships</topic><topic>Interocean canals</topic><topic>Lakes</topic><topic>Maritime satellites</topic><topic>Ports</topic><topic>Satellites</topic><topic>Ships</topic><topic>Traffic congestion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harun-Al-Rashid, Ahmed</creatorcontrib><creatorcontrib>Yang, Chan-Su</creatorcontrib><creatorcontrib>Shin, Dae-Woon</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of navigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harun-Al-Rashid, Ahmed</au><au>Yang, Chan-Su</au><au>Shin, Dae-Woon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of maritime traffic anomalies using Satellite-AIS and multisensory satellite imageries: Application to the 2021 Suez Canal obstruction</atitle><jtitle>Journal of navigation</jtitle><addtitle>J. Navigation</addtitle><date>2022-09</date><risdate>2022</risdate><volume>75</volume><issue>5</issue><spage>1082</spage><epage>1099</epage><pages>1082-1099</pages><issn>0373-4633</issn><eissn>1469-7785</eissn><abstract>This study summarises the scenario of maritime traffic anomalies, like the increased congestion and U-turn of ships caused by the ship grounding in the Suez Canal in March 2021. Here, satellite automatic identification system based ship trajectories, and Sentinel-1 and Sentinel-2 images based ship positions are analysed after subdividing the study area into seas, lakes and canals. The results show that the blockage affected the maritime traffic for more than three weeks, waiting ship numbers increased from 5 to 122, and daily one to three ships made a U-turn between 23 and 31 March in the Gulf of Suez. Ship density also increased to more than double in Bitter Lakes with a minimum waiting time of 7 days. Hence, to avoid such prolonged waiting of ships, we propose a warning method based on the sharp speed decrease rate, U-turn and congestion.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0373463322000364</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0373-4633
ispartof Journal of navigation, 2022-09, Vol.75 (5), p.1082-1099
issn 0373-4633
1469-7785
language eng
recordid cdi_proquest_journals_2756582668
source Cambridge University Press Journals Complete
subjects Alliances
Anomalies
Canals
Container ships
Interocean canals
Lakes
Maritime satellites
Ports
Satellites
Ships
Traffic congestion
title Detection of maritime traffic anomalies using Satellite-AIS and multisensory satellite imageries: Application to the 2021 Suez Canal obstruction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A46%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20maritime%20traffic%20anomalies%20using%20Satellite-AIS%20and%20multisensory%20satellite%20imageries:%20Application%20to%20the%202021%20Suez%20Canal%20obstruction&rft.jtitle=Journal%20of%20navigation&rft.au=Harun-Al-Rashid,%20Ahmed&rft.date=2022-09&rft.volume=75&rft.issue=5&rft.spage=1082&rft.epage=1099&rft.pages=1082-1099&rft.issn=0373-4633&rft.eissn=1469-7785&rft_id=info:doi/10.1017/S0373463322000364&rft_dat=%3Cproquest_cross%3E2756582668%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2756582668&rft_id=info:pmid/&rft_cupid=10_1017_S0373463322000364&rfr_iscdi=true