PROS 2.0: A Plug-In for Routability Optimization and Routed Wirelength Estimation Using Deep Learning

Recently, the topic of how to utilize prior knowledge obtained by machine-learning (ML) techniques during the EDA flow has been widely studied. In this article, we study this topic and propose a practical plug-in named PROS for both routability optimization and routed wirelength estimation which can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computer-aided design of integrated circuits and systems 2023-01, Vol.42 (1), p.164-177
Hauptverfasser: Chen, Jingsong, Kuang, Jian, Zhao, Guowei, Huang, Dennis J.-H., Young, Evangeline F. Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 177
container_issue 1
container_start_page 164
container_title IEEE transactions on computer-aided design of integrated circuits and systems
container_volume 42
creator Chen, Jingsong
Kuang, Jian
Zhao, Guowei
Huang, Dennis J.-H.
Young, Evangeline F. Y.
description Recently, the topic of how to utilize prior knowledge obtained by machine-learning (ML) techniques during the EDA flow has been widely studied. In this article, we study this topic and propose a practical plug-in named PROS for both routability optimization and routed wirelength estimation which can be applied in the state-of-the-art commercial EDA tool or an academic EDA flow with negligible runtime overhead. PROS consists of three parts: 1) an effective fully convolutional network (FCN)-based predictor that only utilizes the data from placement result to forecast global routing (GR) congestion; 2) a parameter optimizer that can reasonably adjust GR cost parameters based on the prediction result to generate a better GR solution for detailed routing (DR); and 3) a convolutional neural network (CNN)-based wirelength estimator which can report accurate routed wirelength at the placement stage by using the predicted GR congestion. Experiments show that on the industrial benchmark suite in the advanced technology node, PROS can achieve high accuracy of GR congestion prediction and significantly reduce design rule checking (DRC) violations by 11.65% on average, and on the DAC-2012 benchmark suite, PROS can achieve a very low error rate (1.82%) for wirelength estimation which greatly outperforms that of FLUTE (21.52%) by 19.70%.
doi_str_mv 10.1109/TCAD.2022.3168259
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2756560630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9759464</ieee_id><sourcerecordid>2756560630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-de70ecf6d3a3730806684e2657c1ad692307269bf4c7fb388d8dd41ee72c45863</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHhZ8Jw4-5H98FbaqoVCS23xuKTJpKbEpG6SQ_31pqZ4GoZ53pnhIeSeQcgY2Kf1eDQJOXAeCqYMj-wFGTArdCBZxC7JALg2AYCGa3JT13sAJiNuBwSXq8U75SE80xFdFu0umJU0qzxdVW0Tb_Mib450cWjyr_wnbvKqpHGZ_g0xpR-5xwLLXfNJp3WH9MCmzssdnSAe6BxjX3bdLbnK4qLGu3Mdks3LdD1-C-aL19l4NA8SbkUTpKgBk0ylIhZagAGljESuIp2wOFWWC9Bc2W0mE51thTGpSVPJEDVPZGSUGJLHfu_BV98t1o3bV60vu5OO60hFCpSAjmI9lfiqrj1m7uC75_3RMXAnm-5k051surPNLvPQZ3JE_OetjqxUUvwCUCZvHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756560630</pqid></control><display><type>article</type><title>PROS 2.0: A Plug-In for Routability Optimization and Routed Wirelength Estimation Using Deep Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Jingsong ; Kuang, Jian ; Zhao, Guowei ; Huang, Dennis J.-H. ; Young, Evangeline F. Y.</creator><creatorcontrib>Chen, Jingsong ; Kuang, Jian ; Zhao, Guowei ; Huang, Dennis J.-H. ; Young, Evangeline F. Y.</creatorcontrib><description>Recently, the topic of how to utilize prior knowledge obtained by machine-learning (ML) techniques during the EDA flow has been widely studied. In this article, we study this topic and propose a practical plug-in named PROS for both routability optimization and routed wirelength estimation which can be applied in the state-of-the-art commercial EDA tool or an academic EDA flow with negligible runtime overhead. PROS consists of three parts: 1) an effective fully convolutional network (FCN)-based predictor that only utilizes the data from placement result to forecast global routing (GR) congestion; 2) a parameter optimizer that can reasonably adjust GR cost parameters based on the prediction result to generate a better GR solution for detailed routing (DR); and 3) a convolutional neural network (CNN)-based wirelength estimator which can report accurate routed wirelength at the placement stage by using the predicted GR congestion. Experiments show that on the industrial benchmark suite in the advanced technology node, PROS can achieve high accuracy of GR congestion prediction and significantly reduce design rule checking (DRC) violations by 11.65% on average, and on the DAC-2012 benchmark suite, PROS can achieve a very low error rate (1.82%) for wirelength estimation which greatly outperforms that of FLUTE (21.52%) by 19.70%.</description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/TCAD.2022.3168259</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Benchmark testing ; Benchmarks ; Circuit optimization ; Congestion ; Costs ; Deep learning ; design automation ; Estimation ; Machine learning ; Optimization ; Parameters ; Placement ; Plugs ; Routing ; Runtime ; Wires</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 2023-01, Vol.42 (1), p.164-177</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-de70ecf6d3a3730806684e2657c1ad692307269bf4c7fb388d8dd41ee72c45863</citedby><cites>FETCH-LOGICAL-c293t-de70ecf6d3a3730806684e2657c1ad692307269bf4c7fb388d8dd41ee72c45863</cites><orcidid>0000-0001-9867-9805</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9759464$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9759464$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Jingsong</creatorcontrib><creatorcontrib>Kuang, Jian</creatorcontrib><creatorcontrib>Zhao, Guowei</creatorcontrib><creatorcontrib>Huang, Dennis J.-H.</creatorcontrib><creatorcontrib>Young, Evangeline F. Y.</creatorcontrib><title>PROS 2.0: A Plug-In for Routability Optimization and Routed Wirelength Estimation Using Deep Learning</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description>Recently, the topic of how to utilize prior knowledge obtained by machine-learning (ML) techniques during the EDA flow has been widely studied. In this article, we study this topic and propose a practical plug-in named PROS for both routability optimization and routed wirelength estimation which can be applied in the state-of-the-art commercial EDA tool or an academic EDA flow with negligible runtime overhead. PROS consists of three parts: 1) an effective fully convolutional network (FCN)-based predictor that only utilizes the data from placement result to forecast global routing (GR) congestion; 2) a parameter optimizer that can reasonably adjust GR cost parameters based on the prediction result to generate a better GR solution for detailed routing (DR); and 3) a convolutional neural network (CNN)-based wirelength estimator which can report accurate routed wirelength at the placement stage by using the predicted GR congestion. Experiments show that on the industrial benchmark suite in the advanced technology node, PROS can achieve high accuracy of GR congestion prediction and significantly reduce design rule checking (DRC) violations by 11.65% on average, and on the DAC-2012 benchmark suite, PROS can achieve a very low error rate (1.82%) for wirelength estimation which greatly outperforms that of FLUTE (21.52%) by 19.70%.</description><subject>Artificial neural networks</subject><subject>Benchmark testing</subject><subject>Benchmarks</subject><subject>Circuit optimization</subject><subject>Congestion</subject><subject>Costs</subject><subject>Deep learning</subject><subject>design automation</subject><subject>Estimation</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Placement</subject><subject>Plugs</subject><subject>Routing</subject><subject>Runtime</subject><subject>Wires</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFZ_gHhZ8Jw4-5H98FbaqoVCS23xuKTJpKbEpG6SQ_31pqZ4GoZ53pnhIeSeQcgY2Kf1eDQJOXAeCqYMj-wFGTArdCBZxC7JALg2AYCGa3JT13sAJiNuBwSXq8U75SE80xFdFu0umJU0qzxdVW0Tb_Mib450cWjyr_wnbvKqpHGZ_g0xpR-5xwLLXfNJp3WH9MCmzssdnSAe6BxjX3bdLbnK4qLGu3Mdks3LdD1-C-aL19l4NA8SbkUTpKgBk0ylIhZagAGljESuIp2wOFWWC9Bc2W0mE51thTGpSVPJEDVPZGSUGJLHfu_BV98t1o3bV60vu5OO60hFCpSAjmI9lfiqrj1m7uC75_3RMXAnm-5k051surPNLvPQZ3JE_OetjqxUUvwCUCZvHQ</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Chen, Jingsong</creator><creator>Kuang, Jian</creator><creator>Zhao, Guowei</creator><creator>Huang, Dennis J.-H.</creator><creator>Young, Evangeline F. Y.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9867-9805</orcidid></search><sort><creationdate>202301</creationdate><title>PROS 2.0: A Plug-In for Routability Optimization and Routed Wirelength Estimation Using Deep Learning</title><author>Chen, Jingsong ; Kuang, Jian ; Zhao, Guowei ; Huang, Dennis J.-H. ; Young, Evangeline F. Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-de70ecf6d3a3730806684e2657c1ad692307269bf4c7fb388d8dd41ee72c45863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Benchmark testing</topic><topic>Benchmarks</topic><topic>Circuit optimization</topic><topic>Congestion</topic><topic>Costs</topic><topic>Deep learning</topic><topic>design automation</topic><topic>Estimation</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Placement</topic><topic>Plugs</topic><topic>Routing</topic><topic>Runtime</topic><topic>Wires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jingsong</creatorcontrib><creatorcontrib>Kuang, Jian</creatorcontrib><creatorcontrib>Zhao, Guowei</creatorcontrib><creatorcontrib>Huang, Dennis J.-H.</creatorcontrib><creatorcontrib>Young, Evangeline F. Y.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Jingsong</au><au>Kuang, Jian</au><au>Zhao, Guowei</au><au>Huang, Dennis J.-H.</au><au>Young, Evangeline F. Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PROS 2.0: A Plug-In for Routability Optimization and Routed Wirelength Estimation Using Deep Learning</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>2023-01</date><risdate>2023</risdate><volume>42</volume><issue>1</issue><spage>164</spage><epage>177</epage><pages>164-177</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract>Recently, the topic of how to utilize prior knowledge obtained by machine-learning (ML) techniques during the EDA flow has been widely studied. In this article, we study this topic and propose a practical plug-in named PROS for both routability optimization and routed wirelength estimation which can be applied in the state-of-the-art commercial EDA tool or an academic EDA flow with negligible runtime overhead. PROS consists of three parts: 1) an effective fully convolutional network (FCN)-based predictor that only utilizes the data from placement result to forecast global routing (GR) congestion; 2) a parameter optimizer that can reasonably adjust GR cost parameters based on the prediction result to generate a better GR solution for detailed routing (DR); and 3) a convolutional neural network (CNN)-based wirelength estimator which can report accurate routed wirelength at the placement stage by using the predicted GR congestion. Experiments show that on the industrial benchmark suite in the advanced technology node, PROS can achieve high accuracy of GR congestion prediction and significantly reduce design rule checking (DRC) violations by 11.65% on average, and on the DAC-2012 benchmark suite, PROS can achieve a very low error rate (1.82%) for wirelength estimation which greatly outperforms that of FLUTE (21.52%) by 19.70%.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCAD.2022.3168259</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9867-9805</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0070
ispartof IEEE transactions on computer-aided design of integrated circuits and systems, 2023-01, Vol.42 (1), p.164-177
issn 0278-0070
1937-4151
language eng
recordid cdi_proquest_journals_2756560630
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Benchmark testing
Benchmarks
Circuit optimization
Congestion
Costs
Deep learning
design automation
Estimation
Machine learning
Optimization
Parameters
Placement
Plugs
Routing
Runtime
Wires
title PROS 2.0: A Plug-In for Routability Optimization and Routed Wirelength Estimation Using Deep Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T14%3A23%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PROS%202.0:%20A%20Plug-In%20for%20Routability%20Optimization%20and%20Routed%20Wirelength%20Estimation%20Using%20Deep%20Learning&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Chen,%20Jingsong&rft.date=2023-01&rft.volume=42&rft.issue=1&rft.spage=164&rft.epage=177&rft.pages=164-177&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/TCAD.2022.3168259&rft_dat=%3Cproquest_RIE%3E2756560630%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2756560630&rft_id=info:pmid/&rft_ieee_id=9759464&rfr_iscdi=true