Online Learning of Minmax Solutions for Distributed Estimation and Tracking Control of Sensor Networks in Graphical Games

In this article, a new target tracking algorithm that is based on a distributed estimation-based control protocol is developed for multiple moving sensors subject to adversarial inputs. An augmented system composed of both the estimation error dynamics and the tracking error dynamics is introduced f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on control of network systems 2022-12, Vol.9 (4), p.1923-1936
Hauptverfasser: Lian, Bosen, Lewis, Frank L., Hewer, Gary A., Estabridis, Katia, Chai, Tianyou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1936
container_issue 4
container_start_page 1923
container_title IEEE transactions on control of network systems
container_volume 9
creator Lian, Bosen
Lewis, Frank L.
Hewer, Gary A.
Estabridis, Katia
Chai, Tianyou
description In this article, a new target tracking algorithm that is based on a distributed estimation-based control protocol is developed for multiple moving sensors subject to adversarial inputs. An augmented system composed of both the estimation error dynamics and the tracking error dynamics is introduced for the distributed estimation and target tracking control problem. We integrate estimation and control to simultaneously minimize infinite-horizon estimation and tracking errors in sensor networks with disturbances. A Minmax strategy as an alternative goal to Nash equilibrium is proposed to compute the sensor's optimal motion controls in the presence of worst-case neighbor controls and disturbances. In contrast to Nash, Minmax yields a distributed algebraic Riccati equation that is easily solved locally by each sensor. A method based on reinforcement learning is given to compute sensor motion inputs so that all sensors estimate and track the target states. Value function approximation using neural networks is used to solve the distributed Bellman equations online based on the real-time observed data. Proofs are given to guarantee the performance of the combined distributed estimation and tracking algorithms. Finally, the simulation examples show the effectiveness of the proposed algorithm.
doi_str_mv 10.1109/TCNS.2022.3181550
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2756558529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9794571</ieee_id><sourcerecordid>2756558529</sourcerecordid><originalsourceid>FETCH-LOGICAL-c266t-ec99d79f404da3ddef1fa6302b9d387a079c893f582b071e8a1d9b28d027b5953</originalsourceid><addsrcrecordid>eNpNkE9PAjEQxRujiQT5AMZLE89g_9Dt9mhWRBOEA3huutuuFpYW226Ub-9uIMbTzGTee5P5AXCL0QRjJB42xXI9IYiQCcU5ZgxdgAGhhI1ZztHlv_4ajGLcIoQwYd1MB-C4co11Bi6MCs66D-hr-GbdXv3AtW_aZL2LsPYBPtmYgi3bZDScxWT3qt9B5TTcBFXtem_hXQq-6TPWxsXOtTTp24ddhNbBeVCHT1upBs7V3sQbcFWrJprRuQ7B-_NsU7yMF6v5a_G4GFcky9LYVEJoLuopmmpFtTY1rlVGESmFpjlXiIsqF7RmOSkRxyZXWIuS5BoRXjLB6BDcn3IPwX-1Jia59W1w3UlJOMs6DoyIToVPqir4GIOp5SF0P4ajxEj2kGUPWfaQ5Rly57k7eawx5k8vuJgyjukvfsx5Tw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756558529</pqid></control><display><type>article</type><title>Online Learning of Minmax Solutions for Distributed Estimation and Tracking Control of Sensor Networks in Graphical Games</title><source>IEEE Electronic Library (IEL)</source><creator>Lian, Bosen ; Lewis, Frank L. ; Hewer, Gary A. ; Estabridis, Katia ; Chai, Tianyou</creator><creatorcontrib>Lian, Bosen ; Lewis, Frank L. ; Hewer, Gary A. ; Estabridis, Katia ; Chai, Tianyou</creatorcontrib><description>In this article, a new target tracking algorithm that is based on a distributed estimation-based control protocol is developed for multiple moving sensors subject to adversarial inputs. An augmented system composed of both the estimation error dynamics and the tracking error dynamics is introduced for the distributed estimation and target tracking control problem. We integrate estimation and control to simultaneously minimize infinite-horizon estimation and tracking errors in sensor networks with disturbances. A Minmax strategy as an alternative goal to Nash equilibrium is proposed to compute the sensor's optimal motion controls in the presence of worst-case neighbor controls and disturbances. In contrast to Nash, Minmax yields a distributed algebraic Riccati equation that is easily solved locally by each sensor. A method based on reinforcement learning is given to compute sensor motion inputs so that all sensors estimate and track the target states. Value function approximation using neural networks is used to solve the distributed Bellman equations online based on the real-time observed data. Proofs are given to guarantee the performance of the combined distributed estimation and tracking algorithms. Finally, the simulation examples show the effectiveness of the proposed algorithm.</description><identifier>ISSN: 2325-5870</identifier><identifier>EISSN: 2325-5870</identifier><identifier>EISSN: 2372-2533</identifier><identifier>DOI: 10.1109/TCNS.2022.3181550</identifier><identifier>CODEN: ITCNAY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Control systems ; Disturbances ; Estimation ; Game theory ; Games ; Graphical game ; Heuristic algorithms ; Machine learning ; minmax strategy ; Motion control ; Network systems ; Neural networks ; neural networks (NNs) ; reinforcement learning (RL) ; Riccati equation ; Sensors ; Target tracking ; Tracking control ; Tracking errors</subject><ispartof>IEEE transactions on control of network systems, 2022-12, Vol.9 (4), p.1923-1936</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c266t-ec99d79f404da3ddef1fa6302b9d387a079c893f582b071e8a1d9b28d027b5953</citedby><cites>FETCH-LOGICAL-c266t-ec99d79f404da3ddef1fa6302b9d387a079c893f582b071e8a1d9b28d027b5953</cites><orcidid>0000-0003-4074-1615 ; 0000-0002-5447-0708 ; 0000-0002-3275-9551 ; 0000-0002-5010-4858 ; 0000-0002-4623-1483</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9794571$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9794571$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lian, Bosen</creatorcontrib><creatorcontrib>Lewis, Frank L.</creatorcontrib><creatorcontrib>Hewer, Gary A.</creatorcontrib><creatorcontrib>Estabridis, Katia</creatorcontrib><creatorcontrib>Chai, Tianyou</creatorcontrib><title>Online Learning of Minmax Solutions for Distributed Estimation and Tracking Control of Sensor Networks in Graphical Games</title><title>IEEE transactions on control of network systems</title><addtitle>TCNS</addtitle><description>In this article, a new target tracking algorithm that is based on a distributed estimation-based control protocol is developed for multiple moving sensors subject to adversarial inputs. An augmented system composed of both the estimation error dynamics and the tracking error dynamics is introduced for the distributed estimation and target tracking control problem. We integrate estimation and control to simultaneously minimize infinite-horizon estimation and tracking errors in sensor networks with disturbances. A Minmax strategy as an alternative goal to Nash equilibrium is proposed to compute the sensor's optimal motion controls in the presence of worst-case neighbor controls and disturbances. In contrast to Nash, Minmax yields a distributed algebraic Riccati equation that is easily solved locally by each sensor. A method based on reinforcement learning is given to compute sensor motion inputs so that all sensors estimate and track the target states. Value function approximation using neural networks is used to solve the distributed Bellman equations online based on the real-time observed data. Proofs are given to guarantee the performance of the combined distributed estimation and tracking algorithms. Finally, the simulation examples show the effectiveness of the proposed algorithm.</description><subject>Algorithms</subject><subject>Control systems</subject><subject>Disturbances</subject><subject>Estimation</subject><subject>Game theory</subject><subject>Games</subject><subject>Graphical game</subject><subject>Heuristic algorithms</subject><subject>Machine learning</subject><subject>minmax strategy</subject><subject>Motion control</subject><subject>Network systems</subject><subject>Neural networks</subject><subject>neural networks (NNs)</subject><subject>reinforcement learning (RL)</subject><subject>Riccati equation</subject><subject>Sensors</subject><subject>Target tracking</subject><subject>Tracking control</subject><subject>Tracking errors</subject><issn>2325-5870</issn><issn>2325-5870</issn><issn>2372-2533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9PAjEQxRujiQT5AMZLE89g_9Dt9mhWRBOEA3huutuuFpYW226Ub-9uIMbTzGTee5P5AXCL0QRjJB42xXI9IYiQCcU5ZgxdgAGhhI1ZztHlv_4ajGLcIoQwYd1MB-C4co11Bi6MCs66D-hr-GbdXv3AtW_aZL2LsPYBPtmYgi3bZDScxWT3qt9B5TTcBFXtem_hXQq-6TPWxsXOtTTp24ddhNbBeVCHT1upBs7V3sQbcFWrJprRuQ7B-_NsU7yMF6v5a_G4GFcky9LYVEJoLuopmmpFtTY1rlVGESmFpjlXiIsqF7RmOSkRxyZXWIuS5BoRXjLB6BDcn3IPwX-1Jia59W1w3UlJOMs6DoyIToVPqir4GIOp5SF0P4ajxEj2kGUPWfaQ5Rly57k7eawx5k8vuJgyjukvfsx5Tw</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Lian, Bosen</creator><creator>Lewis, Frank L.</creator><creator>Hewer, Gary A.</creator><creator>Estabridis, Katia</creator><creator>Chai, Tianyou</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4074-1615</orcidid><orcidid>https://orcid.org/0000-0002-5447-0708</orcidid><orcidid>https://orcid.org/0000-0002-3275-9551</orcidid><orcidid>https://orcid.org/0000-0002-5010-4858</orcidid><orcidid>https://orcid.org/0000-0002-4623-1483</orcidid></search><sort><creationdate>20221201</creationdate><title>Online Learning of Minmax Solutions for Distributed Estimation and Tracking Control of Sensor Networks in Graphical Games</title><author>Lian, Bosen ; Lewis, Frank L. ; Hewer, Gary A. ; Estabridis, Katia ; Chai, Tianyou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c266t-ec99d79f404da3ddef1fa6302b9d387a079c893f582b071e8a1d9b28d027b5953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Control systems</topic><topic>Disturbances</topic><topic>Estimation</topic><topic>Game theory</topic><topic>Games</topic><topic>Graphical game</topic><topic>Heuristic algorithms</topic><topic>Machine learning</topic><topic>minmax strategy</topic><topic>Motion control</topic><topic>Network systems</topic><topic>Neural networks</topic><topic>neural networks (NNs)</topic><topic>reinforcement learning (RL)</topic><topic>Riccati equation</topic><topic>Sensors</topic><topic>Target tracking</topic><topic>Tracking control</topic><topic>Tracking errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lian, Bosen</creatorcontrib><creatorcontrib>Lewis, Frank L.</creatorcontrib><creatorcontrib>Hewer, Gary A.</creatorcontrib><creatorcontrib>Estabridis, Katia</creatorcontrib><creatorcontrib>Chai, Tianyou</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on control of network systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lian, Bosen</au><au>Lewis, Frank L.</au><au>Hewer, Gary A.</au><au>Estabridis, Katia</au><au>Chai, Tianyou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online Learning of Minmax Solutions for Distributed Estimation and Tracking Control of Sensor Networks in Graphical Games</atitle><jtitle>IEEE transactions on control of network systems</jtitle><stitle>TCNS</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>9</volume><issue>4</issue><spage>1923</spage><epage>1936</epage><pages>1923-1936</pages><issn>2325-5870</issn><eissn>2325-5870</eissn><eissn>2372-2533</eissn><coden>ITCNAY</coden><abstract>In this article, a new target tracking algorithm that is based on a distributed estimation-based control protocol is developed for multiple moving sensors subject to adversarial inputs. An augmented system composed of both the estimation error dynamics and the tracking error dynamics is introduced for the distributed estimation and target tracking control problem. We integrate estimation and control to simultaneously minimize infinite-horizon estimation and tracking errors in sensor networks with disturbances. A Minmax strategy as an alternative goal to Nash equilibrium is proposed to compute the sensor's optimal motion controls in the presence of worst-case neighbor controls and disturbances. In contrast to Nash, Minmax yields a distributed algebraic Riccati equation that is easily solved locally by each sensor. A method based on reinforcement learning is given to compute sensor motion inputs so that all sensors estimate and track the target states. Value function approximation using neural networks is used to solve the distributed Bellman equations online based on the real-time observed data. Proofs are given to guarantee the performance of the combined distributed estimation and tracking algorithms. Finally, the simulation examples show the effectiveness of the proposed algorithm.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCNS.2022.3181550</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4074-1615</orcidid><orcidid>https://orcid.org/0000-0002-5447-0708</orcidid><orcidid>https://orcid.org/0000-0002-3275-9551</orcidid><orcidid>https://orcid.org/0000-0002-5010-4858</orcidid><orcidid>https://orcid.org/0000-0002-4623-1483</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2325-5870
ispartof IEEE transactions on control of network systems, 2022-12, Vol.9 (4), p.1923-1936
issn 2325-5870
2325-5870
2372-2533
language eng
recordid cdi_proquest_journals_2756558529
source IEEE Electronic Library (IEL)
subjects Algorithms
Control systems
Disturbances
Estimation
Game theory
Games
Graphical game
Heuristic algorithms
Machine learning
minmax strategy
Motion control
Network systems
Neural networks
neural networks (NNs)
reinforcement learning (RL)
Riccati equation
Sensors
Target tracking
Tracking control
Tracking errors
title Online Learning of Minmax Solutions for Distributed Estimation and Tracking Control of Sensor Networks in Graphical Games
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A45%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20Learning%20of%20Minmax%20Solutions%20for%20Distributed%20Estimation%20and%20Tracking%20Control%20of%20Sensor%20Networks%20in%20Graphical%20Games&rft.jtitle=IEEE%20transactions%20on%20control%20of%20network%20systems&rft.au=Lian,%20Bosen&rft.date=2022-12-01&rft.volume=9&rft.issue=4&rft.spage=1923&rft.epage=1936&rft.pages=1923-1936&rft.issn=2325-5870&rft.eissn=2325-5870&rft.coden=ITCNAY&rft_id=info:doi/10.1109/TCNS.2022.3181550&rft_dat=%3Cproquest_RIE%3E2756558529%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2756558529&rft_id=info:pmid/&rft_ieee_id=9794571&rfr_iscdi=true