Online Learning of Minmax Solutions for Distributed Estimation and Tracking Control of Sensor Networks in Graphical Games
In this article, a new target tracking algorithm that is based on a distributed estimation-based control protocol is developed for multiple moving sensors subject to adversarial inputs. An augmented system composed of both the estimation error dynamics and the tracking error dynamics is introduced f...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on control of network systems 2022-12, Vol.9 (4), p.1923-1936 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1936 |
---|---|
container_issue | 4 |
container_start_page | 1923 |
container_title | IEEE transactions on control of network systems |
container_volume | 9 |
creator | Lian, Bosen Lewis, Frank L. Hewer, Gary A. Estabridis, Katia Chai, Tianyou |
description | In this article, a new target tracking algorithm that is based on a distributed estimation-based control protocol is developed for multiple moving sensors subject to adversarial inputs. An augmented system composed of both the estimation error dynamics and the tracking error dynamics is introduced for the distributed estimation and target tracking control problem. We integrate estimation and control to simultaneously minimize infinite-horizon estimation and tracking errors in sensor networks with disturbances. A Minmax strategy as an alternative goal to Nash equilibrium is proposed to compute the sensor's optimal motion controls in the presence of worst-case neighbor controls and disturbances. In contrast to Nash, Minmax yields a distributed algebraic Riccati equation that is easily solved locally by each sensor. A method based on reinforcement learning is given to compute sensor motion inputs so that all sensors estimate and track the target states. Value function approximation using neural networks is used to solve the distributed Bellman equations online based on the real-time observed data. Proofs are given to guarantee the performance of the combined distributed estimation and tracking algorithms. Finally, the simulation examples show the effectiveness of the proposed algorithm. |
doi_str_mv | 10.1109/TCNS.2022.3181550 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2756558529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9794571</ieee_id><sourcerecordid>2756558529</sourcerecordid><originalsourceid>FETCH-LOGICAL-c266t-ec99d79f404da3ddef1fa6302b9d387a079c893f582b071e8a1d9b28d027b5953</originalsourceid><addsrcrecordid>eNpNkE9PAjEQxRujiQT5AMZLE89g_9Dt9mhWRBOEA3huutuuFpYW226Ub-9uIMbTzGTee5P5AXCL0QRjJB42xXI9IYiQCcU5ZgxdgAGhhI1ZztHlv_4ajGLcIoQwYd1MB-C4co11Bi6MCs66D-hr-GbdXv3AtW_aZL2LsPYBPtmYgi3bZDScxWT3qt9B5TTcBFXtem_hXQq-6TPWxsXOtTTp24ddhNbBeVCHT1upBs7V3sQbcFWrJprRuQ7B-_NsU7yMF6v5a_G4GFcky9LYVEJoLuopmmpFtTY1rlVGESmFpjlXiIsqF7RmOSkRxyZXWIuS5BoRXjLB6BDcn3IPwX-1Jia59W1w3UlJOMs6DoyIToVPqir4GIOp5SF0P4ajxEj2kGUPWfaQ5Rly57k7eawx5k8vuJgyjukvfsx5Tw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756558529</pqid></control><display><type>article</type><title>Online Learning of Minmax Solutions for Distributed Estimation and Tracking Control of Sensor Networks in Graphical Games</title><source>IEEE Electronic Library (IEL)</source><creator>Lian, Bosen ; Lewis, Frank L. ; Hewer, Gary A. ; Estabridis, Katia ; Chai, Tianyou</creator><creatorcontrib>Lian, Bosen ; Lewis, Frank L. ; Hewer, Gary A. ; Estabridis, Katia ; Chai, Tianyou</creatorcontrib><description>In this article, a new target tracking algorithm that is based on a distributed estimation-based control protocol is developed for multiple moving sensors subject to adversarial inputs. An augmented system composed of both the estimation error dynamics and the tracking error dynamics is introduced for the distributed estimation and target tracking control problem. We integrate estimation and control to simultaneously minimize infinite-horizon estimation and tracking errors in sensor networks with disturbances. A Minmax strategy as an alternative goal to Nash equilibrium is proposed to compute the sensor's optimal motion controls in the presence of worst-case neighbor controls and disturbances. In contrast to Nash, Minmax yields a distributed algebraic Riccati equation that is easily solved locally by each sensor. A method based on reinforcement learning is given to compute sensor motion inputs so that all sensors estimate and track the target states. Value function approximation using neural networks is used to solve the distributed Bellman equations online based on the real-time observed data. Proofs are given to guarantee the performance of the combined distributed estimation and tracking algorithms. Finally, the simulation examples show the effectiveness of the proposed algorithm.</description><identifier>ISSN: 2325-5870</identifier><identifier>EISSN: 2325-5870</identifier><identifier>EISSN: 2372-2533</identifier><identifier>DOI: 10.1109/TCNS.2022.3181550</identifier><identifier>CODEN: ITCNAY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Control systems ; Disturbances ; Estimation ; Game theory ; Games ; Graphical game ; Heuristic algorithms ; Machine learning ; minmax strategy ; Motion control ; Network systems ; Neural networks ; neural networks (NNs) ; reinforcement learning (RL) ; Riccati equation ; Sensors ; Target tracking ; Tracking control ; Tracking errors</subject><ispartof>IEEE transactions on control of network systems, 2022-12, Vol.9 (4), p.1923-1936</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c266t-ec99d79f404da3ddef1fa6302b9d387a079c893f582b071e8a1d9b28d027b5953</citedby><cites>FETCH-LOGICAL-c266t-ec99d79f404da3ddef1fa6302b9d387a079c893f582b071e8a1d9b28d027b5953</cites><orcidid>0000-0003-4074-1615 ; 0000-0002-5447-0708 ; 0000-0002-3275-9551 ; 0000-0002-5010-4858 ; 0000-0002-4623-1483</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9794571$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9794571$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lian, Bosen</creatorcontrib><creatorcontrib>Lewis, Frank L.</creatorcontrib><creatorcontrib>Hewer, Gary A.</creatorcontrib><creatorcontrib>Estabridis, Katia</creatorcontrib><creatorcontrib>Chai, Tianyou</creatorcontrib><title>Online Learning of Minmax Solutions for Distributed Estimation and Tracking Control of Sensor Networks in Graphical Games</title><title>IEEE transactions on control of network systems</title><addtitle>TCNS</addtitle><description>In this article, a new target tracking algorithm that is based on a distributed estimation-based control protocol is developed for multiple moving sensors subject to adversarial inputs. An augmented system composed of both the estimation error dynamics and the tracking error dynamics is introduced for the distributed estimation and target tracking control problem. We integrate estimation and control to simultaneously minimize infinite-horizon estimation and tracking errors in sensor networks with disturbances. A Minmax strategy as an alternative goal to Nash equilibrium is proposed to compute the sensor's optimal motion controls in the presence of worst-case neighbor controls and disturbances. In contrast to Nash, Minmax yields a distributed algebraic Riccati equation that is easily solved locally by each sensor. A method based on reinforcement learning is given to compute sensor motion inputs so that all sensors estimate and track the target states. Value function approximation using neural networks is used to solve the distributed Bellman equations online based on the real-time observed data. Proofs are given to guarantee the performance of the combined distributed estimation and tracking algorithms. Finally, the simulation examples show the effectiveness of the proposed algorithm.</description><subject>Algorithms</subject><subject>Control systems</subject><subject>Disturbances</subject><subject>Estimation</subject><subject>Game theory</subject><subject>Games</subject><subject>Graphical game</subject><subject>Heuristic algorithms</subject><subject>Machine learning</subject><subject>minmax strategy</subject><subject>Motion control</subject><subject>Network systems</subject><subject>Neural networks</subject><subject>neural networks (NNs)</subject><subject>reinforcement learning (RL)</subject><subject>Riccati equation</subject><subject>Sensors</subject><subject>Target tracking</subject><subject>Tracking control</subject><subject>Tracking errors</subject><issn>2325-5870</issn><issn>2325-5870</issn><issn>2372-2533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9PAjEQxRujiQT5AMZLE89g_9Dt9mhWRBOEA3huutuuFpYW226Ub-9uIMbTzGTee5P5AXCL0QRjJB42xXI9IYiQCcU5ZgxdgAGhhI1ZztHlv_4ajGLcIoQwYd1MB-C4co11Bi6MCs66D-hr-GbdXv3AtW_aZL2LsPYBPtmYgi3bZDScxWT3qt9B5TTcBFXtem_hXQq-6TPWxsXOtTTp24ddhNbBeVCHT1upBs7V3sQbcFWrJprRuQ7B-_NsU7yMF6v5a_G4GFcky9LYVEJoLuopmmpFtTY1rlVGESmFpjlXiIsqF7RmOSkRxyZXWIuS5BoRXjLB6BDcn3IPwX-1Jia59W1w3UlJOMs6DoyIToVPqir4GIOp5SF0P4ajxEj2kGUPWfaQ5Rly57k7eawx5k8vuJgyjukvfsx5Tw</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Lian, Bosen</creator><creator>Lewis, Frank L.</creator><creator>Hewer, Gary A.</creator><creator>Estabridis, Katia</creator><creator>Chai, Tianyou</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4074-1615</orcidid><orcidid>https://orcid.org/0000-0002-5447-0708</orcidid><orcidid>https://orcid.org/0000-0002-3275-9551</orcidid><orcidid>https://orcid.org/0000-0002-5010-4858</orcidid><orcidid>https://orcid.org/0000-0002-4623-1483</orcidid></search><sort><creationdate>20221201</creationdate><title>Online Learning of Minmax Solutions for Distributed Estimation and Tracking Control of Sensor Networks in Graphical Games</title><author>Lian, Bosen ; Lewis, Frank L. ; Hewer, Gary A. ; Estabridis, Katia ; Chai, Tianyou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c266t-ec99d79f404da3ddef1fa6302b9d387a079c893f582b071e8a1d9b28d027b5953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Control systems</topic><topic>Disturbances</topic><topic>Estimation</topic><topic>Game theory</topic><topic>Games</topic><topic>Graphical game</topic><topic>Heuristic algorithms</topic><topic>Machine learning</topic><topic>minmax strategy</topic><topic>Motion control</topic><topic>Network systems</topic><topic>Neural networks</topic><topic>neural networks (NNs)</topic><topic>reinforcement learning (RL)</topic><topic>Riccati equation</topic><topic>Sensors</topic><topic>Target tracking</topic><topic>Tracking control</topic><topic>Tracking errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lian, Bosen</creatorcontrib><creatorcontrib>Lewis, Frank L.</creatorcontrib><creatorcontrib>Hewer, Gary A.</creatorcontrib><creatorcontrib>Estabridis, Katia</creatorcontrib><creatorcontrib>Chai, Tianyou</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on control of network systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lian, Bosen</au><au>Lewis, Frank L.</au><au>Hewer, Gary A.</au><au>Estabridis, Katia</au><au>Chai, Tianyou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online Learning of Minmax Solutions for Distributed Estimation and Tracking Control of Sensor Networks in Graphical Games</atitle><jtitle>IEEE transactions on control of network systems</jtitle><stitle>TCNS</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>9</volume><issue>4</issue><spage>1923</spage><epage>1936</epage><pages>1923-1936</pages><issn>2325-5870</issn><eissn>2325-5870</eissn><eissn>2372-2533</eissn><coden>ITCNAY</coden><abstract>In this article, a new target tracking algorithm that is based on a distributed estimation-based control protocol is developed for multiple moving sensors subject to adversarial inputs. An augmented system composed of both the estimation error dynamics and the tracking error dynamics is introduced for the distributed estimation and target tracking control problem. We integrate estimation and control to simultaneously minimize infinite-horizon estimation and tracking errors in sensor networks with disturbances. A Minmax strategy as an alternative goal to Nash equilibrium is proposed to compute the sensor's optimal motion controls in the presence of worst-case neighbor controls and disturbances. In contrast to Nash, Minmax yields a distributed algebraic Riccati equation that is easily solved locally by each sensor. A method based on reinforcement learning is given to compute sensor motion inputs so that all sensors estimate and track the target states. Value function approximation using neural networks is used to solve the distributed Bellman equations online based on the real-time observed data. Proofs are given to guarantee the performance of the combined distributed estimation and tracking algorithms. Finally, the simulation examples show the effectiveness of the proposed algorithm.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCNS.2022.3181550</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4074-1615</orcidid><orcidid>https://orcid.org/0000-0002-5447-0708</orcidid><orcidid>https://orcid.org/0000-0002-3275-9551</orcidid><orcidid>https://orcid.org/0000-0002-5010-4858</orcidid><orcidid>https://orcid.org/0000-0002-4623-1483</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2325-5870 |
ispartof | IEEE transactions on control of network systems, 2022-12, Vol.9 (4), p.1923-1936 |
issn | 2325-5870 2325-5870 2372-2533 |
language | eng |
recordid | cdi_proquest_journals_2756558529 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Control systems Disturbances Estimation Game theory Games Graphical game Heuristic algorithms Machine learning minmax strategy Motion control Network systems Neural networks neural networks (NNs) reinforcement learning (RL) Riccati equation Sensors Target tracking Tracking control Tracking errors |
title | Online Learning of Minmax Solutions for Distributed Estimation and Tracking Control of Sensor Networks in Graphical Games |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A45%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20Learning%20of%20Minmax%20Solutions%20for%20Distributed%20Estimation%20and%20Tracking%20Control%20of%20Sensor%20Networks%20in%20Graphical%20Games&rft.jtitle=IEEE%20transactions%20on%20control%20of%20network%20systems&rft.au=Lian,%20Bosen&rft.date=2022-12-01&rft.volume=9&rft.issue=4&rft.spage=1923&rft.epage=1936&rft.pages=1923-1936&rft.issn=2325-5870&rft.eissn=2325-5870&rft.coden=ITCNAY&rft_id=info:doi/10.1109/TCNS.2022.3181550&rft_dat=%3Cproquest_RIE%3E2756558529%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2756558529&rft_id=info:pmid/&rft_ieee_id=9794571&rfr_iscdi=true |