A 1T2R1C ReRAM CIM Accelerator With Energy-Efficient Voltage Division and Capacitive Coupling for CNN Acceleration in AI Edge Applications

Resistive random-access memory (ReRAM) is widely studied in computing-in-memory (CIM) for neural network acceleration in edge devices. However, the static current of conventional 2T2R array becomes prominent with increasing computing parallelism, leading to remarkable power and area costs. To resolv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2023-01, Vol.70 (1), p.276-280
Hauptverfasser: Chen, Deyang, Guo, Zhiwang, Fang, Jinbei, Zhao, Chenyang, Jiang, Jingwen, Zhou, Keji, Tian, Haidong, Xiong, Xiankui, Xue, Xiaoyong, Zeng, Xiaoyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 280
container_issue 1
container_start_page 276
container_title IEEE transactions on circuits and systems. II, Express briefs
container_volume 70
creator Chen, Deyang
Guo, Zhiwang
Fang, Jinbei
Zhao, Chenyang
Jiang, Jingwen
Zhou, Keji
Tian, Haidong
Xiong, Xiankui
Xue, Xiaoyong
Zeng, Xiaoyang
description Resistive random-access memory (ReRAM) is widely studied in computing-in-memory (CIM) for neural network acceleration in edge devices. However, the static current of conventional 2T2R array becomes prominent with increasing computing parallelism, leading to remarkable power and area costs. To resolve this issue, a voltage-style one-transistor-two-resistor-one-capacitor ReRAM (1T2R1C) CIM accelerator using energy-efficient voltage division and capacitive coupling is proposed for convolutional neural network (CNN) acceleration in AI edge applications. The 1T2R1C cell, which is 15% smaller than the previous 2T2R cell, comprises one selection transistor, two ReRAM resistors for 1-bit weight storage, and a MOS-based capacitor. The multiply-and-accumulation (MAC) operation is realized by voltage division within a cell and capacitive coupling across different cells on a plate line. The static current during computation can be effectively reduced by the series connection of low-resistance state (LRS) and high-resistance state (HRS) ReRAM resistors within a cell and the elimination of low resistance paths in the array. A corresponding weight mapping method is also proposed to transform the multi-bit weight based on 0/1 into that on −1/1, adapting the proposed accelerator for high-precision CNN applications. By evaluation in the 28nm technology, the proposed accelerator with a 384Kb array achieves a peak energy efficiency of 400.2 TOPS/W, ~8.4X higher than previous work. The inference accuracy of CNN reaches 96.2% on the MNIST dataset.
doi_str_mv 10.1109/TCSII.2022.3201367
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2756558277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9866551</ieee_id><sourcerecordid>2756558277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-2806cd6c9ff91b71ba508a574be9963fc1a4e5b41762b62743368dd420b85c603</originalsourceid><addsrcrecordid>eNpFkF1LwzAUhoMoOKd_QG8CXnfmo02ayxKnFjaFOfWypGk6M2pbk26wv-Cvtt2GXp3D4X2fAw8A1xhNMEbibilf03RCECETShCmjJ-AEY6iOKBc4NNhD0XAecjPwYX3a4SIQJSMwE8C8ZIssIQLs0jmUKZzmGhtKuNU1zj4YbtPOK2NW-2CaVlabU3dwfem6tTKwHu7td42NVR1AaVqlbad3Room01b2XoFyx4hn5__kUPY1jBJ4bToAUnb5_T-7C_BWakqb66OcwzeHqZL-RTMXh5TmcwCTUTUBSRGTBdMi7IUOOc4VxGKVcTD3AjBaKmxCk2Uh5gzkjPCQ0pZXBQhQXkcaYboGNweuK1rvjfGd9m62bi6f5kRHrFeGuG8T5FDSrvGe2fKrHX2S7ldhlE2OM_2zrPBeXZ03pduDiVrjPkriJj1VEx_AXt0e64</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756558277</pqid></control><display><type>article</type><title>A 1T2R1C ReRAM CIM Accelerator With Energy-Efficient Voltage Division and Capacitive Coupling for CNN Acceleration in AI Edge Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Deyang ; Guo, Zhiwang ; Fang, Jinbei ; Zhao, Chenyang ; Jiang, Jingwen ; Zhou, Keji ; Tian, Haidong ; Xiong, Xiankui ; Xue, Xiaoyong ; Zeng, Xiaoyang</creator><creatorcontrib>Chen, Deyang ; Guo, Zhiwang ; Fang, Jinbei ; Zhao, Chenyang ; Jiang, Jingwen ; Zhou, Keji ; Tian, Haidong ; Xiong, Xiankui ; Xue, Xiaoyong ; Zeng, Xiaoyang</creatorcontrib><description>Resistive random-access memory (ReRAM) is widely studied in computing-in-memory (CIM) for neural network acceleration in edge devices. However, the static current of conventional 2T2R array becomes prominent with increasing computing parallelism, leading to remarkable power and area costs. To resolve this issue, a voltage-style one-transistor-two-resistor-one-capacitor ReRAM (1T2R1C) CIM accelerator using energy-efficient voltage division and capacitive coupling is proposed for convolutional neural network (CNN) acceleration in AI edge applications. The 1T2R1C cell, which is 15% smaller than the previous 2T2R cell, comprises one selection transistor, two ReRAM resistors for 1-bit weight storage, and a MOS-based capacitor. The multiply-and-accumulation (MAC) operation is realized by voltage division within a cell and capacitive coupling across different cells on a plate line. The static current during computation can be effectively reduced by the series connection of low-resistance state (LRS) and high-resistance state (HRS) ReRAM resistors within a cell and the elimination of low resistance paths in the array. A corresponding weight mapping method is also proposed to transform the multi-bit weight based on 0/1 into that on −1/1, adapting the proposed accelerator for high-precision CNN applications. By evaluation in the 28nm technology, the proposed accelerator with a 384Kb array achieves a peak energy efficiency of 400.2 TOPS/W, ~8.4X higher than previous work. The inference accuracy of CNN reaches 96.2% on the MNIST dataset.</description><identifier>ISSN: 1549-7747</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2022.3201367</identifier><identifier>CODEN: ITCSFK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>1T2R1C ; Arrays ; Artificial neural networks ; capacitive coupling ; Capacitors ; Common Information Model (computing) ; Computer architecture ; Computing-in-memory ; Convolutional neural networks ; Coupling ; Electric potential ; Energy efficiency ; Low resistance ; Microprocessors ; Neural networks ; Random access memory ; ReRAM ; Resistance ; Resistors ; Semiconductor devices ; Transistors ; Voltage ; weight mapping</subject><ispartof>IEEE transactions on circuits and systems. II, Express briefs, 2023-01, Vol.70 (1), p.276-280</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-2806cd6c9ff91b71ba508a574be9963fc1a4e5b41762b62743368dd420b85c603</citedby><cites>FETCH-LOGICAL-c295t-2806cd6c9ff91b71ba508a574be9963fc1a4e5b41762b62743368dd420b85c603</cites><orcidid>0000-0002-3078-4542 ; 0000-0001-9001-4569 ; 0000-0002-5054-8141 ; 0000-0002-0251-1408</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9866551$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9866551$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Deyang</creatorcontrib><creatorcontrib>Guo, Zhiwang</creatorcontrib><creatorcontrib>Fang, Jinbei</creatorcontrib><creatorcontrib>Zhao, Chenyang</creatorcontrib><creatorcontrib>Jiang, Jingwen</creatorcontrib><creatorcontrib>Zhou, Keji</creatorcontrib><creatorcontrib>Tian, Haidong</creatorcontrib><creatorcontrib>Xiong, Xiankui</creatorcontrib><creatorcontrib>Xue, Xiaoyong</creatorcontrib><creatorcontrib>Zeng, Xiaoyang</creatorcontrib><title>A 1T2R1C ReRAM CIM Accelerator With Energy-Efficient Voltage Division and Capacitive Coupling for CNN Acceleration in AI Edge Applications</title><title>IEEE transactions on circuits and systems. II, Express briefs</title><addtitle>TCSII</addtitle><description>Resistive random-access memory (ReRAM) is widely studied in computing-in-memory (CIM) for neural network acceleration in edge devices. However, the static current of conventional 2T2R array becomes prominent with increasing computing parallelism, leading to remarkable power and area costs. To resolve this issue, a voltage-style one-transistor-two-resistor-one-capacitor ReRAM (1T2R1C) CIM accelerator using energy-efficient voltage division and capacitive coupling is proposed for convolutional neural network (CNN) acceleration in AI edge applications. The 1T2R1C cell, which is 15% smaller than the previous 2T2R cell, comprises one selection transistor, two ReRAM resistors for 1-bit weight storage, and a MOS-based capacitor. The multiply-and-accumulation (MAC) operation is realized by voltage division within a cell and capacitive coupling across different cells on a plate line. The static current during computation can be effectively reduced by the series connection of low-resistance state (LRS) and high-resistance state (HRS) ReRAM resistors within a cell and the elimination of low resistance paths in the array. A corresponding weight mapping method is also proposed to transform the multi-bit weight based on 0/1 into that on −1/1, adapting the proposed accelerator for high-precision CNN applications. By evaluation in the 28nm technology, the proposed accelerator with a 384Kb array achieves a peak energy efficiency of 400.2 TOPS/W, ~8.4X higher than previous work. The inference accuracy of CNN reaches 96.2% on the MNIST dataset.</description><subject>1T2R1C</subject><subject>Arrays</subject><subject>Artificial neural networks</subject><subject>capacitive coupling</subject><subject>Capacitors</subject><subject>Common Information Model (computing)</subject><subject>Computer architecture</subject><subject>Computing-in-memory</subject><subject>Convolutional neural networks</subject><subject>Coupling</subject><subject>Electric potential</subject><subject>Energy efficiency</subject><subject>Low resistance</subject><subject>Microprocessors</subject><subject>Neural networks</subject><subject>Random access memory</subject><subject>ReRAM</subject><subject>Resistance</subject><subject>Resistors</subject><subject>Semiconductor devices</subject><subject>Transistors</subject><subject>Voltage</subject><subject>weight mapping</subject><issn>1549-7747</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkF1LwzAUhoMoOKd_QG8CXnfmo02ayxKnFjaFOfWypGk6M2pbk26wv-Cvtt2GXp3D4X2fAw8A1xhNMEbibilf03RCECETShCmjJ-AEY6iOKBc4NNhD0XAecjPwYX3a4SIQJSMwE8C8ZIssIQLs0jmUKZzmGhtKuNU1zj4YbtPOK2NW-2CaVlabU3dwfem6tTKwHu7td42NVR1AaVqlbad3Room01b2XoFyx4hn5__kUPY1jBJ4bToAUnb5_T-7C_BWakqb66OcwzeHqZL-RTMXh5TmcwCTUTUBSRGTBdMi7IUOOc4VxGKVcTD3AjBaKmxCk2Uh5gzkjPCQ0pZXBQhQXkcaYboGNweuK1rvjfGd9m62bi6f5kRHrFeGuG8T5FDSrvGe2fKrHX2S7ldhlE2OM_2zrPBeXZ03pduDiVrjPkriJj1VEx_AXt0e64</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Chen, Deyang</creator><creator>Guo, Zhiwang</creator><creator>Fang, Jinbei</creator><creator>Zhao, Chenyang</creator><creator>Jiang, Jingwen</creator><creator>Zhou, Keji</creator><creator>Tian, Haidong</creator><creator>Xiong, Xiankui</creator><creator>Xue, Xiaoyong</creator><creator>Zeng, Xiaoyang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3078-4542</orcidid><orcidid>https://orcid.org/0000-0001-9001-4569</orcidid><orcidid>https://orcid.org/0000-0002-5054-8141</orcidid><orcidid>https://orcid.org/0000-0002-0251-1408</orcidid></search><sort><creationdate>202301</creationdate><title>A 1T2R1C ReRAM CIM Accelerator With Energy-Efficient Voltage Division and Capacitive Coupling for CNN Acceleration in AI Edge Applications</title><author>Chen, Deyang ; Guo, Zhiwang ; Fang, Jinbei ; Zhao, Chenyang ; Jiang, Jingwen ; Zhou, Keji ; Tian, Haidong ; Xiong, Xiankui ; Xue, Xiaoyong ; Zeng, Xiaoyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-2806cd6c9ff91b71ba508a574be9963fc1a4e5b41762b62743368dd420b85c603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>1T2R1C</topic><topic>Arrays</topic><topic>Artificial neural networks</topic><topic>capacitive coupling</topic><topic>Capacitors</topic><topic>Common Information Model (computing)</topic><topic>Computer architecture</topic><topic>Computing-in-memory</topic><topic>Convolutional neural networks</topic><topic>Coupling</topic><topic>Electric potential</topic><topic>Energy efficiency</topic><topic>Low resistance</topic><topic>Microprocessors</topic><topic>Neural networks</topic><topic>Random access memory</topic><topic>ReRAM</topic><topic>Resistance</topic><topic>Resistors</topic><topic>Semiconductor devices</topic><topic>Transistors</topic><topic>Voltage</topic><topic>weight mapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Deyang</creatorcontrib><creatorcontrib>Guo, Zhiwang</creatorcontrib><creatorcontrib>Fang, Jinbei</creatorcontrib><creatorcontrib>Zhao, Chenyang</creatorcontrib><creatorcontrib>Jiang, Jingwen</creatorcontrib><creatorcontrib>Zhou, Keji</creatorcontrib><creatorcontrib>Tian, Haidong</creatorcontrib><creatorcontrib>Xiong, Xiankui</creatorcontrib><creatorcontrib>Xue, Xiaoyong</creatorcontrib><creatorcontrib>Zeng, Xiaoyang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Deyang</au><au>Guo, Zhiwang</au><au>Fang, Jinbei</au><au>Zhao, Chenyang</au><au>Jiang, Jingwen</au><au>Zhou, Keji</au><au>Tian, Haidong</au><au>Xiong, Xiankui</au><au>Xue, Xiaoyong</au><au>Zeng, Xiaoyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 1T2R1C ReRAM CIM Accelerator With Energy-Efficient Voltage Division and Capacitive Coupling for CNN Acceleration in AI Edge Applications</atitle><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle><stitle>TCSII</stitle><date>2023-01</date><risdate>2023</risdate><volume>70</volume><issue>1</issue><spage>276</spage><epage>280</epage><pages>276-280</pages><issn>1549-7747</issn><eissn>1558-3791</eissn><coden>ITCSFK</coden><abstract>Resistive random-access memory (ReRAM) is widely studied in computing-in-memory (CIM) for neural network acceleration in edge devices. However, the static current of conventional 2T2R array becomes prominent with increasing computing parallelism, leading to remarkable power and area costs. To resolve this issue, a voltage-style one-transistor-two-resistor-one-capacitor ReRAM (1T2R1C) CIM accelerator using energy-efficient voltage division and capacitive coupling is proposed for convolutional neural network (CNN) acceleration in AI edge applications. The 1T2R1C cell, which is 15% smaller than the previous 2T2R cell, comprises one selection transistor, two ReRAM resistors for 1-bit weight storage, and a MOS-based capacitor. The multiply-and-accumulation (MAC) operation is realized by voltage division within a cell and capacitive coupling across different cells on a plate line. The static current during computation can be effectively reduced by the series connection of low-resistance state (LRS) and high-resistance state (HRS) ReRAM resistors within a cell and the elimination of low resistance paths in the array. A corresponding weight mapping method is also proposed to transform the multi-bit weight based on 0/1 into that on −1/1, adapting the proposed accelerator for high-precision CNN applications. By evaluation in the 28nm technology, the proposed accelerator with a 384Kb array achieves a peak energy efficiency of 400.2 TOPS/W, ~8.4X higher than previous work. The inference accuracy of CNN reaches 96.2% on the MNIST dataset.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2022.3201367</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-3078-4542</orcidid><orcidid>https://orcid.org/0000-0001-9001-4569</orcidid><orcidid>https://orcid.org/0000-0002-5054-8141</orcidid><orcidid>https://orcid.org/0000-0002-0251-1408</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-7747
ispartof IEEE transactions on circuits and systems. II, Express briefs, 2023-01, Vol.70 (1), p.276-280
issn 1549-7747
1558-3791
language eng
recordid cdi_proquest_journals_2756558277
source IEEE Electronic Library (IEL)
subjects 1T2R1C
Arrays
Artificial neural networks
capacitive coupling
Capacitors
Common Information Model (computing)
Computer architecture
Computing-in-memory
Convolutional neural networks
Coupling
Electric potential
Energy efficiency
Low resistance
Microprocessors
Neural networks
Random access memory
ReRAM
Resistance
Resistors
Semiconductor devices
Transistors
Voltage
weight mapping
title A 1T2R1C ReRAM CIM Accelerator With Energy-Efficient Voltage Division and Capacitive Coupling for CNN Acceleration in AI Edge Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A42%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%201T2R1C%20ReRAM%20CIM%20Accelerator%20With%20Energy-Efficient%20Voltage%20Division%20and%20Capacitive%20Coupling%20for%20CNN%20Acceleration%20in%20AI%20Edge%20Applications&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20II,%20Express%20briefs&rft.au=Chen,%20Deyang&rft.date=2023-01&rft.volume=70&rft.issue=1&rft.spage=276&rft.epage=280&rft.pages=276-280&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ITCSFK&rft_id=info:doi/10.1109/TCSII.2022.3201367&rft_dat=%3Cproquest_RIE%3E2756558277%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2756558277&rft_id=info:pmid/&rft_ieee_id=9866551&rfr_iscdi=true