A 1T2R1C ReRAM CIM Accelerator With Energy-Efficient Voltage Division and Capacitive Coupling for CNN Acceleration in AI Edge Applications
Resistive random-access memory (ReRAM) is widely studied in computing-in-memory (CIM) for neural network acceleration in edge devices. However, the static current of conventional 2T2R array becomes prominent with increasing computing parallelism, leading to remarkable power and area costs. To resolv...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2023-01, Vol.70 (1), p.276-280 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 280 |
---|---|
container_issue | 1 |
container_start_page | 276 |
container_title | IEEE transactions on circuits and systems. II, Express briefs |
container_volume | 70 |
creator | Chen, Deyang Guo, Zhiwang Fang, Jinbei Zhao, Chenyang Jiang, Jingwen Zhou, Keji Tian, Haidong Xiong, Xiankui Xue, Xiaoyong Zeng, Xiaoyang |
description | Resistive random-access memory (ReRAM) is widely studied in computing-in-memory (CIM) for neural network acceleration in edge devices. However, the static current of conventional 2T2R array becomes prominent with increasing computing parallelism, leading to remarkable power and area costs. To resolve this issue, a voltage-style one-transistor-two-resistor-one-capacitor ReRAM (1T2R1C) CIM accelerator using energy-efficient voltage division and capacitive coupling is proposed for convolutional neural network (CNN) acceleration in AI edge applications. The 1T2R1C cell, which is 15% smaller than the previous 2T2R cell, comprises one selection transistor, two ReRAM resistors for 1-bit weight storage, and a MOS-based capacitor. The multiply-and-accumulation (MAC) operation is realized by voltage division within a cell and capacitive coupling across different cells on a plate line. The static current during computation can be effectively reduced by the series connection of low-resistance state (LRS) and high-resistance state (HRS) ReRAM resistors within a cell and the elimination of low resistance paths in the array. A corresponding weight mapping method is also proposed to transform the multi-bit weight based on 0/1 into that on −1/1, adapting the proposed accelerator for high-precision CNN applications. By evaluation in the 28nm technology, the proposed accelerator with a 384Kb array achieves a peak energy efficiency of 400.2 TOPS/W, ~8.4X higher than previous work. The inference accuracy of CNN reaches 96.2% on the MNIST dataset. |
doi_str_mv | 10.1109/TCSII.2022.3201367 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2756558277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9866551</ieee_id><sourcerecordid>2756558277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-2806cd6c9ff91b71ba508a574be9963fc1a4e5b41762b62743368dd420b85c603</originalsourceid><addsrcrecordid>eNpFkF1LwzAUhoMoOKd_QG8CXnfmo02ayxKnFjaFOfWypGk6M2pbk26wv-Cvtt2GXp3D4X2fAw8A1xhNMEbibilf03RCECETShCmjJ-AEY6iOKBc4NNhD0XAecjPwYX3a4SIQJSMwE8C8ZIssIQLs0jmUKZzmGhtKuNU1zj4YbtPOK2NW-2CaVlabU3dwfem6tTKwHu7td42NVR1AaVqlbad3Room01b2XoFyx4hn5__kUPY1jBJ4bToAUnb5_T-7C_BWakqb66OcwzeHqZL-RTMXh5TmcwCTUTUBSRGTBdMi7IUOOc4VxGKVcTD3AjBaKmxCk2Uh5gzkjPCQ0pZXBQhQXkcaYboGNweuK1rvjfGd9m62bi6f5kRHrFeGuG8T5FDSrvGe2fKrHX2S7ldhlE2OM_2zrPBeXZ03pduDiVrjPkriJj1VEx_AXt0e64</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756558277</pqid></control><display><type>article</type><title>A 1T2R1C ReRAM CIM Accelerator With Energy-Efficient Voltage Division and Capacitive Coupling for CNN Acceleration in AI Edge Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Deyang ; Guo, Zhiwang ; Fang, Jinbei ; Zhao, Chenyang ; Jiang, Jingwen ; Zhou, Keji ; Tian, Haidong ; Xiong, Xiankui ; Xue, Xiaoyong ; Zeng, Xiaoyang</creator><creatorcontrib>Chen, Deyang ; Guo, Zhiwang ; Fang, Jinbei ; Zhao, Chenyang ; Jiang, Jingwen ; Zhou, Keji ; Tian, Haidong ; Xiong, Xiankui ; Xue, Xiaoyong ; Zeng, Xiaoyang</creatorcontrib><description>Resistive random-access memory (ReRAM) is widely studied in computing-in-memory (CIM) for neural network acceleration in edge devices. However, the static current of conventional 2T2R array becomes prominent with increasing computing parallelism, leading to remarkable power and area costs. To resolve this issue, a voltage-style one-transistor-two-resistor-one-capacitor ReRAM (1T2R1C) CIM accelerator using energy-efficient voltage division and capacitive coupling is proposed for convolutional neural network (CNN) acceleration in AI edge applications. The 1T2R1C cell, which is 15% smaller than the previous 2T2R cell, comprises one selection transistor, two ReRAM resistors for 1-bit weight storage, and a MOS-based capacitor. The multiply-and-accumulation (MAC) operation is realized by voltage division within a cell and capacitive coupling across different cells on a plate line. The static current during computation can be effectively reduced by the series connection of low-resistance state (LRS) and high-resistance state (HRS) ReRAM resistors within a cell and the elimination of low resistance paths in the array. A corresponding weight mapping method is also proposed to transform the multi-bit weight based on 0/1 into that on −1/1, adapting the proposed accelerator for high-precision CNN applications. By evaluation in the 28nm technology, the proposed accelerator with a 384Kb array achieves a peak energy efficiency of 400.2 TOPS/W, ~8.4X higher than previous work. The inference accuracy of CNN reaches 96.2% on the MNIST dataset.</description><identifier>ISSN: 1549-7747</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2022.3201367</identifier><identifier>CODEN: ITCSFK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>1T2R1C ; Arrays ; Artificial neural networks ; capacitive coupling ; Capacitors ; Common Information Model (computing) ; Computer architecture ; Computing-in-memory ; Convolutional neural networks ; Coupling ; Electric potential ; Energy efficiency ; Low resistance ; Microprocessors ; Neural networks ; Random access memory ; ReRAM ; Resistance ; Resistors ; Semiconductor devices ; Transistors ; Voltage ; weight mapping</subject><ispartof>IEEE transactions on circuits and systems. II, Express briefs, 2023-01, Vol.70 (1), p.276-280</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-2806cd6c9ff91b71ba508a574be9963fc1a4e5b41762b62743368dd420b85c603</citedby><cites>FETCH-LOGICAL-c295t-2806cd6c9ff91b71ba508a574be9963fc1a4e5b41762b62743368dd420b85c603</cites><orcidid>0000-0002-3078-4542 ; 0000-0001-9001-4569 ; 0000-0002-5054-8141 ; 0000-0002-0251-1408</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9866551$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9866551$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Deyang</creatorcontrib><creatorcontrib>Guo, Zhiwang</creatorcontrib><creatorcontrib>Fang, Jinbei</creatorcontrib><creatorcontrib>Zhao, Chenyang</creatorcontrib><creatorcontrib>Jiang, Jingwen</creatorcontrib><creatorcontrib>Zhou, Keji</creatorcontrib><creatorcontrib>Tian, Haidong</creatorcontrib><creatorcontrib>Xiong, Xiankui</creatorcontrib><creatorcontrib>Xue, Xiaoyong</creatorcontrib><creatorcontrib>Zeng, Xiaoyang</creatorcontrib><title>A 1T2R1C ReRAM CIM Accelerator With Energy-Efficient Voltage Division and Capacitive Coupling for CNN Acceleration in AI Edge Applications</title><title>IEEE transactions on circuits and systems. II, Express briefs</title><addtitle>TCSII</addtitle><description>Resistive random-access memory (ReRAM) is widely studied in computing-in-memory (CIM) for neural network acceleration in edge devices. However, the static current of conventional 2T2R array becomes prominent with increasing computing parallelism, leading to remarkable power and area costs. To resolve this issue, a voltage-style one-transistor-two-resistor-one-capacitor ReRAM (1T2R1C) CIM accelerator using energy-efficient voltage division and capacitive coupling is proposed for convolutional neural network (CNN) acceleration in AI edge applications. The 1T2R1C cell, which is 15% smaller than the previous 2T2R cell, comprises one selection transistor, two ReRAM resistors for 1-bit weight storage, and a MOS-based capacitor. The multiply-and-accumulation (MAC) operation is realized by voltage division within a cell and capacitive coupling across different cells on a plate line. The static current during computation can be effectively reduced by the series connection of low-resistance state (LRS) and high-resistance state (HRS) ReRAM resistors within a cell and the elimination of low resistance paths in the array. A corresponding weight mapping method is also proposed to transform the multi-bit weight based on 0/1 into that on −1/1, adapting the proposed accelerator for high-precision CNN applications. By evaluation in the 28nm technology, the proposed accelerator with a 384Kb array achieves a peak energy efficiency of 400.2 TOPS/W, ~8.4X higher than previous work. The inference accuracy of CNN reaches 96.2% on the MNIST dataset.</description><subject>1T2R1C</subject><subject>Arrays</subject><subject>Artificial neural networks</subject><subject>capacitive coupling</subject><subject>Capacitors</subject><subject>Common Information Model (computing)</subject><subject>Computer architecture</subject><subject>Computing-in-memory</subject><subject>Convolutional neural networks</subject><subject>Coupling</subject><subject>Electric potential</subject><subject>Energy efficiency</subject><subject>Low resistance</subject><subject>Microprocessors</subject><subject>Neural networks</subject><subject>Random access memory</subject><subject>ReRAM</subject><subject>Resistance</subject><subject>Resistors</subject><subject>Semiconductor devices</subject><subject>Transistors</subject><subject>Voltage</subject><subject>weight mapping</subject><issn>1549-7747</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkF1LwzAUhoMoOKd_QG8CXnfmo02ayxKnFjaFOfWypGk6M2pbk26wv-Cvtt2GXp3D4X2fAw8A1xhNMEbibilf03RCECETShCmjJ-AEY6iOKBc4NNhD0XAecjPwYX3a4SIQJSMwE8C8ZIssIQLs0jmUKZzmGhtKuNU1zj4YbtPOK2NW-2CaVlabU3dwfem6tTKwHu7td42NVR1AaVqlbad3Room01b2XoFyx4hn5__kUPY1jBJ4bToAUnb5_T-7C_BWakqb66OcwzeHqZL-RTMXh5TmcwCTUTUBSRGTBdMi7IUOOc4VxGKVcTD3AjBaKmxCk2Uh5gzkjPCQ0pZXBQhQXkcaYboGNweuK1rvjfGd9m62bi6f5kRHrFeGuG8T5FDSrvGe2fKrHX2S7ldhlE2OM_2zrPBeXZ03pduDiVrjPkriJj1VEx_AXt0e64</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Chen, Deyang</creator><creator>Guo, Zhiwang</creator><creator>Fang, Jinbei</creator><creator>Zhao, Chenyang</creator><creator>Jiang, Jingwen</creator><creator>Zhou, Keji</creator><creator>Tian, Haidong</creator><creator>Xiong, Xiankui</creator><creator>Xue, Xiaoyong</creator><creator>Zeng, Xiaoyang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3078-4542</orcidid><orcidid>https://orcid.org/0000-0001-9001-4569</orcidid><orcidid>https://orcid.org/0000-0002-5054-8141</orcidid><orcidid>https://orcid.org/0000-0002-0251-1408</orcidid></search><sort><creationdate>202301</creationdate><title>A 1T2R1C ReRAM CIM Accelerator With Energy-Efficient Voltage Division and Capacitive Coupling for CNN Acceleration in AI Edge Applications</title><author>Chen, Deyang ; Guo, Zhiwang ; Fang, Jinbei ; Zhao, Chenyang ; Jiang, Jingwen ; Zhou, Keji ; Tian, Haidong ; Xiong, Xiankui ; Xue, Xiaoyong ; Zeng, Xiaoyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-2806cd6c9ff91b71ba508a574be9963fc1a4e5b41762b62743368dd420b85c603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>1T2R1C</topic><topic>Arrays</topic><topic>Artificial neural networks</topic><topic>capacitive coupling</topic><topic>Capacitors</topic><topic>Common Information Model (computing)</topic><topic>Computer architecture</topic><topic>Computing-in-memory</topic><topic>Convolutional neural networks</topic><topic>Coupling</topic><topic>Electric potential</topic><topic>Energy efficiency</topic><topic>Low resistance</topic><topic>Microprocessors</topic><topic>Neural networks</topic><topic>Random access memory</topic><topic>ReRAM</topic><topic>Resistance</topic><topic>Resistors</topic><topic>Semiconductor devices</topic><topic>Transistors</topic><topic>Voltage</topic><topic>weight mapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Deyang</creatorcontrib><creatorcontrib>Guo, Zhiwang</creatorcontrib><creatorcontrib>Fang, Jinbei</creatorcontrib><creatorcontrib>Zhao, Chenyang</creatorcontrib><creatorcontrib>Jiang, Jingwen</creatorcontrib><creatorcontrib>Zhou, Keji</creatorcontrib><creatorcontrib>Tian, Haidong</creatorcontrib><creatorcontrib>Xiong, Xiankui</creatorcontrib><creatorcontrib>Xue, Xiaoyong</creatorcontrib><creatorcontrib>Zeng, Xiaoyang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Deyang</au><au>Guo, Zhiwang</au><au>Fang, Jinbei</au><au>Zhao, Chenyang</au><au>Jiang, Jingwen</au><au>Zhou, Keji</au><au>Tian, Haidong</au><au>Xiong, Xiankui</au><au>Xue, Xiaoyong</au><au>Zeng, Xiaoyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 1T2R1C ReRAM CIM Accelerator With Energy-Efficient Voltage Division and Capacitive Coupling for CNN Acceleration in AI Edge Applications</atitle><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle><stitle>TCSII</stitle><date>2023-01</date><risdate>2023</risdate><volume>70</volume><issue>1</issue><spage>276</spage><epage>280</epage><pages>276-280</pages><issn>1549-7747</issn><eissn>1558-3791</eissn><coden>ITCSFK</coden><abstract>Resistive random-access memory (ReRAM) is widely studied in computing-in-memory (CIM) for neural network acceleration in edge devices. However, the static current of conventional 2T2R array becomes prominent with increasing computing parallelism, leading to remarkable power and area costs. To resolve this issue, a voltage-style one-transistor-two-resistor-one-capacitor ReRAM (1T2R1C) CIM accelerator using energy-efficient voltage division and capacitive coupling is proposed for convolutional neural network (CNN) acceleration in AI edge applications. The 1T2R1C cell, which is 15% smaller than the previous 2T2R cell, comprises one selection transistor, two ReRAM resistors for 1-bit weight storage, and a MOS-based capacitor. The multiply-and-accumulation (MAC) operation is realized by voltage division within a cell and capacitive coupling across different cells on a plate line. The static current during computation can be effectively reduced by the series connection of low-resistance state (LRS) and high-resistance state (HRS) ReRAM resistors within a cell and the elimination of low resistance paths in the array. A corresponding weight mapping method is also proposed to transform the multi-bit weight based on 0/1 into that on −1/1, adapting the proposed accelerator for high-precision CNN applications. By evaluation in the 28nm technology, the proposed accelerator with a 384Kb array achieves a peak energy efficiency of 400.2 TOPS/W, ~8.4X higher than previous work. The inference accuracy of CNN reaches 96.2% on the MNIST dataset.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2022.3201367</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-3078-4542</orcidid><orcidid>https://orcid.org/0000-0001-9001-4569</orcidid><orcidid>https://orcid.org/0000-0002-5054-8141</orcidid><orcidid>https://orcid.org/0000-0002-0251-1408</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1549-7747 |
ispartof | IEEE transactions on circuits and systems. II, Express briefs, 2023-01, Vol.70 (1), p.276-280 |
issn | 1549-7747 1558-3791 |
language | eng |
recordid | cdi_proquest_journals_2756558277 |
source | IEEE Electronic Library (IEL) |
subjects | 1T2R1C Arrays Artificial neural networks capacitive coupling Capacitors Common Information Model (computing) Computer architecture Computing-in-memory Convolutional neural networks Coupling Electric potential Energy efficiency Low resistance Microprocessors Neural networks Random access memory ReRAM Resistance Resistors Semiconductor devices Transistors Voltage weight mapping |
title | A 1T2R1C ReRAM CIM Accelerator With Energy-Efficient Voltage Division and Capacitive Coupling for CNN Acceleration in AI Edge Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A42%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%201T2R1C%20ReRAM%20CIM%20Accelerator%20With%20Energy-Efficient%20Voltage%20Division%20and%20Capacitive%20Coupling%20for%20CNN%20Acceleration%20in%20AI%20Edge%20Applications&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20II,%20Express%20briefs&rft.au=Chen,%20Deyang&rft.date=2023-01&rft.volume=70&rft.issue=1&rft.spage=276&rft.epage=280&rft.pages=276-280&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ITCSFK&rft_id=info:doi/10.1109/TCSII.2022.3201367&rft_dat=%3Cproquest_RIE%3E2756558277%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2756558277&rft_id=info:pmid/&rft_ieee_id=9866551&rfr_iscdi=true |