Fixed point theorems and periodic problems for nonlinear Hill’s equation

Two main results of fixed point theory in infinite dimensional space are Schauder’s theorem and the contraction mapping principle. Krasnoselskii combined them into one fixed point result. In this paper, we continue the study of extensions of these theorems investigating a convex modular in a origina...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear differential equations and applications 2023-03, Vol.30 (2), Article 16
Hauptverfasser: Nowakowski, A., Plebaniak, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Nonlinear differential equations and applications
container_volume 30
creator Nowakowski, A.
Plebaniak, R.
description Two main results of fixed point theory in infinite dimensional space are Schauder’s theorem and the contraction mapping principle. Krasnoselskii combined them into one fixed point result. In this paper, we continue the study of extensions of these theorems investigating a convex modular in a original vector space, not in modular space and without Δ 2 condition, to provide certain extensions of Banach contraction principle and Krasnoselskii fixed point theorem. We applied that theorem to solve the nonlinear periodic problem of Hill’s equation.
doi_str_mv 10.1007/s00030-022-00825-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2756146195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2756146195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-454e848dd25c347f277adf6d37bdc08e492a8f255e9f4e04a17a2bbe778f0f903</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsv4GnBc3Qym91sjlKsVQQveg7Z3URTtkmbbEFvvoav55OYWsGbpxl-_v-f4SPknMElAxBXCQBKoIBIARqsqDwgE8YRqATgh3kHZFQKxGNyktISgIm6lBNyP3dvpi_WwfmxGF9NiGaVCu2zZKILveuKdQztsFNtiIUPfnDe6Fgs3DB8fXymwmy2enTBn5Ijq4dkzn7nlDzPb55mC_rweHs3u36gHcpypLzipuFN32PVlVxYFEL3tu5L0fYdNIZL1I3FqjLScgNcM6GxbY0QjQUroZySi31vfmyzNWlUy7CNPp9UKKqa8ZrJKrtw7-piSCkaq9bRrXR8VwzUjpnaM1OZmfphpmQOlftQymb_YuJf9T-pbyGmb_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756146195</pqid></control><display><type>article</type><title>Fixed point theorems and periodic problems for nonlinear Hill’s equation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Nowakowski, A. ; Plebaniak, R.</creator><creatorcontrib>Nowakowski, A. ; Plebaniak, R.</creatorcontrib><description>Two main results of fixed point theory in infinite dimensional space are Schauder’s theorem and the contraction mapping principle. Krasnoselskii combined them into one fixed point result. In this paper, we continue the study of extensions of these theorems investigating a convex modular in a original vector space, not in modular space and without Δ 2 condition, to provide certain extensions of Banach contraction principle and Krasnoselskii fixed point theorem. We applied that theorem to solve the nonlinear periodic problem of Hill’s equation.</description><identifier>ISSN: 1021-9722</identifier><identifier>EISSN: 1420-9004</identifier><identifier>DOI: 10.1007/s00030-022-00825-9</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Fixed points (mathematics) ; Mathematics ; Mathematics and Statistics ; Principles ; Theorems ; Vector spaces</subject><ispartof>Nonlinear differential equations and applications, 2023-03, Vol.30 (2), Article 16</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-454e848dd25c347f277adf6d37bdc08e492a8f255e9f4e04a17a2bbe778f0f903</citedby><cites>FETCH-LOGICAL-c293t-454e848dd25c347f277adf6d37bdc08e492a8f255e9f4e04a17a2bbe778f0f903</cites><orcidid>0000-0003-1670-9770</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00030-022-00825-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00030-022-00825-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Nowakowski, A.</creatorcontrib><creatorcontrib>Plebaniak, R.</creatorcontrib><title>Fixed point theorems and periodic problems for nonlinear Hill’s equation</title><title>Nonlinear differential equations and applications</title><addtitle>Nonlinear Differ. Equ. Appl</addtitle><description>Two main results of fixed point theory in infinite dimensional space are Schauder’s theorem and the contraction mapping principle. Krasnoselskii combined them into one fixed point result. In this paper, we continue the study of extensions of these theorems investigating a convex modular in a original vector space, not in modular space and without Δ 2 condition, to provide certain extensions of Banach contraction principle and Krasnoselskii fixed point theorem. We applied that theorem to solve the nonlinear periodic problem of Hill’s equation.</description><subject>Analysis</subject><subject>Fixed points (mathematics)</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Principles</subject><subject>Theorems</subject><subject>Vector spaces</subject><issn>1021-9722</issn><issn>1420-9004</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kMFKAzEQhoMoWKsv4GnBc3Qym91sjlKsVQQveg7Z3URTtkmbbEFvvoav55OYWsGbpxl-_v-f4SPknMElAxBXCQBKoIBIARqsqDwgE8YRqATgh3kHZFQKxGNyktISgIm6lBNyP3dvpi_WwfmxGF9NiGaVCu2zZKILveuKdQztsFNtiIUPfnDe6Fgs3DB8fXymwmy2enTBn5Ijq4dkzn7nlDzPb55mC_rweHs3u36gHcpypLzipuFN32PVlVxYFEL3tu5L0fYdNIZL1I3FqjLScgNcM6GxbY0QjQUroZySi31vfmyzNWlUy7CNPp9UKKqa8ZrJKrtw7-piSCkaq9bRrXR8VwzUjpnaM1OZmfphpmQOlftQymb_YuJf9T-pbyGmb_A</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Nowakowski, A.</creator><creator>Plebaniak, R.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1670-9770</orcidid></search><sort><creationdate>20230301</creationdate><title>Fixed point theorems and periodic problems for nonlinear Hill’s equation</title><author>Nowakowski, A. ; Plebaniak, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-454e848dd25c347f277adf6d37bdc08e492a8f255e9f4e04a17a2bbe778f0f903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Fixed points (mathematics)</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Principles</topic><topic>Theorems</topic><topic>Vector spaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nowakowski, A.</creatorcontrib><creatorcontrib>Plebaniak, R.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><jtitle>Nonlinear differential equations and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nowakowski, A.</au><au>Plebaniak, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fixed point theorems and periodic problems for nonlinear Hill’s equation</atitle><jtitle>Nonlinear differential equations and applications</jtitle><stitle>Nonlinear Differ. Equ. Appl</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>30</volume><issue>2</issue><artnum>16</artnum><issn>1021-9722</issn><eissn>1420-9004</eissn><abstract>Two main results of fixed point theory in infinite dimensional space are Schauder’s theorem and the contraction mapping principle. Krasnoselskii combined them into one fixed point result. In this paper, we continue the study of extensions of these theorems investigating a convex modular in a original vector space, not in modular space and without Δ 2 condition, to provide certain extensions of Banach contraction principle and Krasnoselskii fixed point theorem. We applied that theorem to solve the nonlinear periodic problem of Hill’s equation.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00030-022-00825-9</doi><orcidid>https://orcid.org/0000-0003-1670-9770</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1021-9722
ispartof Nonlinear differential equations and applications, 2023-03, Vol.30 (2), Article 16
issn 1021-9722
1420-9004
language eng
recordid cdi_proquest_journals_2756146195
source SpringerLink Journals - AutoHoldings
subjects Analysis
Fixed points (mathematics)
Mathematics
Mathematics and Statistics
Principles
Theorems
Vector spaces
title Fixed point theorems and periodic problems for nonlinear Hill’s equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T18%3A18%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fixed%20point%20theorems%20and%20periodic%20problems%20for%20nonlinear%20Hill%E2%80%99s%20equation&rft.jtitle=Nonlinear%20differential%20equations%20and%20applications&rft.au=Nowakowski,%20A.&rft.date=2023-03-01&rft.volume=30&rft.issue=2&rft.artnum=16&rft.issn=1021-9722&rft.eissn=1420-9004&rft_id=info:doi/10.1007/s00030-022-00825-9&rft_dat=%3Cproquest_cross%3E2756146195%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2756146195&rft_id=info:pmid/&rfr_iscdi=true