Fixed point theorems and periodic problems for nonlinear Hill’s equation
Two main results of fixed point theory in infinite dimensional space are Schauder’s theorem and the contraction mapping principle. Krasnoselskii combined them into one fixed point result. In this paper, we continue the study of extensions of these theorems investigating a convex modular in a origina...
Gespeichert in:
Veröffentlicht in: | Nonlinear differential equations and applications 2023-03, Vol.30 (2), Article 16 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Nonlinear differential equations and applications |
container_volume | 30 |
creator | Nowakowski, A. Plebaniak, R. |
description | Two main results of fixed point theory in infinite dimensional space are Schauder’s theorem and the contraction mapping principle. Krasnoselskii combined them into one fixed point result. In this paper, we continue the study of extensions of these theorems investigating a convex modular in a original vector space, not in modular space and without
Δ
2
condition, to provide certain extensions of Banach contraction principle and Krasnoselskii fixed point theorem. We applied that theorem to solve the nonlinear periodic problem of Hill’s equation. |
doi_str_mv | 10.1007/s00030-022-00825-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2756146195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2756146195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-454e848dd25c347f277adf6d37bdc08e492a8f255e9f4e04a17a2bbe778f0f903</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsv4GnBc3Qym91sjlKsVQQveg7Z3URTtkmbbEFvvoav55OYWsGbpxl-_v-f4SPknMElAxBXCQBKoIBIARqsqDwgE8YRqATgh3kHZFQKxGNyktISgIm6lBNyP3dvpi_WwfmxGF9NiGaVCu2zZKILveuKdQztsFNtiIUPfnDe6Fgs3DB8fXymwmy2enTBn5Ijq4dkzn7nlDzPb55mC_rweHs3u36gHcpypLzipuFN32PVlVxYFEL3tu5L0fYdNIZL1I3FqjLScgNcM6GxbY0QjQUroZySi31vfmyzNWlUy7CNPp9UKKqa8ZrJKrtw7-piSCkaq9bRrXR8VwzUjpnaM1OZmfphpmQOlftQymb_YuJf9T-pbyGmb_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756146195</pqid></control><display><type>article</type><title>Fixed point theorems and periodic problems for nonlinear Hill’s equation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Nowakowski, A. ; Plebaniak, R.</creator><creatorcontrib>Nowakowski, A. ; Plebaniak, R.</creatorcontrib><description>Two main results of fixed point theory in infinite dimensional space are Schauder’s theorem and the contraction mapping principle. Krasnoselskii combined them into one fixed point result. In this paper, we continue the study of extensions of these theorems investigating a convex modular in a original vector space, not in modular space and without
Δ
2
condition, to provide certain extensions of Banach contraction principle and Krasnoselskii fixed point theorem. We applied that theorem to solve the nonlinear periodic problem of Hill’s equation.</description><identifier>ISSN: 1021-9722</identifier><identifier>EISSN: 1420-9004</identifier><identifier>DOI: 10.1007/s00030-022-00825-9</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Fixed points (mathematics) ; Mathematics ; Mathematics and Statistics ; Principles ; Theorems ; Vector spaces</subject><ispartof>Nonlinear differential equations and applications, 2023-03, Vol.30 (2), Article 16</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-454e848dd25c347f277adf6d37bdc08e492a8f255e9f4e04a17a2bbe778f0f903</citedby><cites>FETCH-LOGICAL-c293t-454e848dd25c347f277adf6d37bdc08e492a8f255e9f4e04a17a2bbe778f0f903</cites><orcidid>0000-0003-1670-9770</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00030-022-00825-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00030-022-00825-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Nowakowski, A.</creatorcontrib><creatorcontrib>Plebaniak, R.</creatorcontrib><title>Fixed point theorems and periodic problems for nonlinear Hill’s equation</title><title>Nonlinear differential equations and applications</title><addtitle>Nonlinear Differ. Equ. Appl</addtitle><description>Two main results of fixed point theory in infinite dimensional space are Schauder’s theorem and the contraction mapping principle. Krasnoselskii combined them into one fixed point result. In this paper, we continue the study of extensions of these theorems investigating a convex modular in a original vector space, not in modular space and without
Δ
2
condition, to provide certain extensions of Banach contraction principle and Krasnoselskii fixed point theorem. We applied that theorem to solve the nonlinear periodic problem of Hill’s equation.</description><subject>Analysis</subject><subject>Fixed points (mathematics)</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Principles</subject><subject>Theorems</subject><subject>Vector spaces</subject><issn>1021-9722</issn><issn>1420-9004</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kMFKAzEQhoMoWKsv4GnBc3Qym91sjlKsVQQveg7Z3URTtkmbbEFvvoav55OYWsGbpxl-_v-f4SPknMElAxBXCQBKoIBIARqsqDwgE8YRqATgh3kHZFQKxGNyktISgIm6lBNyP3dvpi_WwfmxGF9NiGaVCu2zZKILveuKdQztsFNtiIUPfnDe6Fgs3DB8fXymwmy2enTBn5Ijq4dkzn7nlDzPb55mC_rweHs3u36gHcpypLzipuFN32PVlVxYFEL3tu5L0fYdNIZL1I3FqjLScgNcM6GxbY0QjQUroZySi31vfmyzNWlUy7CNPp9UKKqa8ZrJKrtw7-piSCkaq9bRrXR8VwzUjpnaM1OZmfphpmQOlftQymb_YuJf9T-pbyGmb_A</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Nowakowski, A.</creator><creator>Plebaniak, R.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1670-9770</orcidid></search><sort><creationdate>20230301</creationdate><title>Fixed point theorems and periodic problems for nonlinear Hill’s equation</title><author>Nowakowski, A. ; Plebaniak, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-454e848dd25c347f277adf6d37bdc08e492a8f255e9f4e04a17a2bbe778f0f903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Fixed points (mathematics)</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Principles</topic><topic>Theorems</topic><topic>Vector spaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nowakowski, A.</creatorcontrib><creatorcontrib>Plebaniak, R.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><jtitle>Nonlinear differential equations and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nowakowski, A.</au><au>Plebaniak, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fixed point theorems and periodic problems for nonlinear Hill’s equation</atitle><jtitle>Nonlinear differential equations and applications</jtitle><stitle>Nonlinear Differ. Equ. Appl</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>30</volume><issue>2</issue><artnum>16</artnum><issn>1021-9722</issn><eissn>1420-9004</eissn><abstract>Two main results of fixed point theory in infinite dimensional space are Schauder’s theorem and the contraction mapping principle. Krasnoselskii combined them into one fixed point result. In this paper, we continue the study of extensions of these theorems investigating a convex modular in a original vector space, not in modular space and without
Δ
2
condition, to provide certain extensions of Banach contraction principle and Krasnoselskii fixed point theorem. We applied that theorem to solve the nonlinear periodic problem of Hill’s equation.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00030-022-00825-9</doi><orcidid>https://orcid.org/0000-0003-1670-9770</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1021-9722 |
ispartof | Nonlinear differential equations and applications, 2023-03, Vol.30 (2), Article 16 |
issn | 1021-9722 1420-9004 |
language | eng |
recordid | cdi_proquest_journals_2756146195 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analysis Fixed points (mathematics) Mathematics Mathematics and Statistics Principles Theorems Vector spaces |
title | Fixed point theorems and periodic problems for nonlinear Hill’s equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T18%3A18%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fixed%20point%20theorems%20and%20periodic%20problems%20for%20nonlinear%20Hill%E2%80%99s%20equation&rft.jtitle=Nonlinear%20differential%20equations%20and%20applications&rft.au=Nowakowski,%20A.&rft.date=2023-03-01&rft.volume=30&rft.issue=2&rft.artnum=16&rft.issn=1021-9722&rft.eissn=1420-9004&rft_id=info:doi/10.1007/s00030-022-00825-9&rft_dat=%3Cproquest_cross%3E2756146195%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2756146195&rft_id=info:pmid/&rfr_iscdi=true |