Glucose/Furfural Substrate Mixtures in Non‐Engineered Yeast: Potential for Massive Rerouting of Fermentation to C−C Bond Formation on Furfural

Suitable mixtures of glucose and furfural may provide novel strategies for C−C bond formation on furfural due to the versatility of low‐cost biological catalysts. We use in‐cell NMR with non‐engineered commercial yeast as the catalyst to determine the interplay between furfural and glucose metabolis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemCatChem 2022-12, Vol.14 (24), p.n/a
Hauptverfasser: Sannelli, Francesca, Gao, Sanni, Jensen, Pernille Rose, Meier, Sebastian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 24
container_start_page
container_title ChemCatChem
container_volume 14
creator Sannelli, Francesca
Gao, Sanni
Jensen, Pernille Rose
Meier, Sebastian
description Suitable mixtures of glucose and furfural may provide novel strategies for C−C bond formation on furfural due to the versatility of low‐cost biological catalysts. We use in‐cell NMR with non‐engineered commercial yeast as the catalyst to determine the interplay between furfural and glucose metabolism in non‐engineered yeast. The presence of furfural is shown to modulate kinetic barriers in glucose conversion and to favor the accumulation of acetaldehyde in situ. As a result, glucose carbons are remarkably strongly redirected towards C−C bond formation between furfural and a glucose‐derived C2 unit. In the presence of suitable glucose/furfural substrate mixtures in non‐engineered yeasts, glucose carbons can achieve relative influxes of at least 80 % into the C−C bond formation on furfural, compared to only 20 % into ethanol. Chain‐elongation of furfural by yeast thus seems a viable strategy for the upgrading of lignocellulosic biomass through concurrent conversion of furfural and glucose. The product is related to chemicals that already have found value in the fine chemical and pharmaceutical industries. Furfural and Glucose Conversion in Non‐Engineered Yeast: Glucose/furfural substrate mixtures can be concurrently upgraded by whole cell catalysis. Through in situ production and interception of pyruvate/acetaldehyde in non‐engineered yeast, such substrate mixtures can efficiently be used for C−C bond formation on furfural using whole‐cell catalysis, while ethanol and glycerol formation can be vastly suppressed.
doi_str_mv 10.1002/cctc.202200933
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2756095455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2756095455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3573-8de0fab826716167e8b11d938e4d29def42e70d1a4c6d5fdaef31cf1376cb98b3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhhdRsFavngOet0023Y9408VWwar4cfC0ZJOJpGwTTbJqbx49Sn9if4kr9eMoBCYMzzMzvFG0T_CAYJwMhQhikOAkwZhRuhH1SJHlMS0Y2_z9F3g72vF-hnHGaJ72ouWkaYX1MBy3TrWON-imrX1wPACa6tfQOvBIG3Rhzert48Q8aAPgQKJ74D4coisbwATdeco6NOXe62dA1-BsG7R5QFahMbh5x_CgrUHBonL1vizRsTUSja2br_vd-7lgN9pSvPGw91370d345LY8jc8vJ2fl0XksaJrTuJCAFa-LJMtJRrIcipoQyWgBI5kwCWqUQI4l4SORyVRJDooSoQjNM1Gzoqb96GA999HZpxZ8qGa2daZbWSV5mmGWjtK0owZrSjjrvQNVPTo9525REVx95V595V795t4JbC286AYW_9BVWd6Wf-4nSQyLvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756095455</pqid></control><display><type>article</type><title>Glucose/Furfural Substrate Mixtures in Non‐Engineered Yeast: Potential for Massive Rerouting of Fermentation to C−C Bond Formation on Furfural</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sannelli, Francesca ; Gao, Sanni ; Jensen, Pernille Rose ; Meier, Sebastian</creator><creatorcontrib>Sannelli, Francesca ; Gao, Sanni ; Jensen, Pernille Rose ; Meier, Sebastian</creatorcontrib><description>Suitable mixtures of glucose and furfural may provide novel strategies for C−C bond formation on furfural due to the versatility of low‐cost biological catalysts. We use in‐cell NMR with non‐engineered commercial yeast as the catalyst to determine the interplay between furfural and glucose metabolism in non‐engineered yeast. The presence of furfural is shown to modulate kinetic barriers in glucose conversion and to favor the accumulation of acetaldehyde in situ. As a result, glucose carbons are remarkably strongly redirected towards C−C bond formation between furfural and a glucose‐derived C2 unit. In the presence of suitable glucose/furfural substrate mixtures in non‐engineered yeasts, glucose carbons can achieve relative influxes of at least 80 % into the C−C bond formation on furfural, compared to only 20 % into ethanol. Chain‐elongation of furfural by yeast thus seems a viable strategy for the upgrading of lignocellulosic biomass through concurrent conversion of furfural and glucose. The product is related to chemicals that already have found value in the fine chemical and pharmaceutical industries. Furfural and Glucose Conversion in Non‐Engineered Yeast: Glucose/furfural substrate mixtures can be concurrently upgraded by whole cell catalysis. Through in situ production and interception of pyruvate/acetaldehyde in non‐engineered yeast, such substrate mixtures can efficiently be used for C−C bond formation on furfural using whole‐cell catalysis, while ethanol and glycerol formation can be vastly suppressed.</description><identifier>ISSN: 1867-3880</identifier><identifier>EISSN: 1867-3899</identifier><identifier>DOI: 10.1002/cctc.202200933</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Acetaldehyde ; Bonding ; Catalysts ; Conversion ; C−C bond formation ; Elongation ; Ethanol ; Fine chemicals ; Furfural ; Glucose ; Lignocellulose ; Mixtures ; NMR ; NMR spectroscopy ; Nuclear magnetic resonance ; Substrates ; whole cell catalysis ; Yeast</subject><ispartof>ChemCatChem, 2022-12, Vol.14 (24), p.n/a</ispartof><rights>2022 The Authors. ChemCatChem published by Wiley-VCH GmbH</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3573-8de0fab826716167e8b11d938e4d29def42e70d1a4c6d5fdaef31cf1376cb98b3</citedby><cites>FETCH-LOGICAL-c3573-8de0fab826716167e8b11d938e4d29def42e70d1a4c6d5fdaef31cf1376cb98b3</cites><orcidid>0000-0003-4359-848X ; 0000-0003-3761-3217 ; 0000-0001-7079-5759</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcctc.202200933$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcctc.202200933$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Sannelli, Francesca</creatorcontrib><creatorcontrib>Gao, Sanni</creatorcontrib><creatorcontrib>Jensen, Pernille Rose</creatorcontrib><creatorcontrib>Meier, Sebastian</creatorcontrib><title>Glucose/Furfural Substrate Mixtures in Non‐Engineered Yeast: Potential for Massive Rerouting of Fermentation to C−C Bond Formation on Furfural</title><title>ChemCatChem</title><description>Suitable mixtures of glucose and furfural may provide novel strategies for C−C bond formation on furfural due to the versatility of low‐cost biological catalysts. We use in‐cell NMR with non‐engineered commercial yeast as the catalyst to determine the interplay between furfural and glucose metabolism in non‐engineered yeast. The presence of furfural is shown to modulate kinetic barriers in glucose conversion and to favor the accumulation of acetaldehyde in situ. As a result, glucose carbons are remarkably strongly redirected towards C−C bond formation between furfural and a glucose‐derived C2 unit. In the presence of suitable glucose/furfural substrate mixtures in non‐engineered yeasts, glucose carbons can achieve relative influxes of at least 80 % into the C−C bond formation on furfural, compared to only 20 % into ethanol. Chain‐elongation of furfural by yeast thus seems a viable strategy for the upgrading of lignocellulosic biomass through concurrent conversion of furfural and glucose. The product is related to chemicals that already have found value in the fine chemical and pharmaceutical industries. Furfural and Glucose Conversion in Non‐Engineered Yeast: Glucose/furfural substrate mixtures can be concurrently upgraded by whole cell catalysis. Through in situ production and interception of pyruvate/acetaldehyde in non‐engineered yeast, such substrate mixtures can efficiently be used for C−C bond formation on furfural using whole‐cell catalysis, while ethanol and glycerol formation can be vastly suppressed.</description><subject>Acetaldehyde</subject><subject>Bonding</subject><subject>Catalysts</subject><subject>Conversion</subject><subject>C−C bond formation</subject><subject>Elongation</subject><subject>Ethanol</subject><subject>Fine chemicals</subject><subject>Furfural</subject><subject>Glucose</subject><subject>Lignocellulose</subject><subject>Mixtures</subject><subject>NMR</subject><subject>NMR spectroscopy</subject><subject>Nuclear magnetic resonance</subject><subject>Substrates</subject><subject>whole cell catalysis</subject><subject>Yeast</subject><issn>1867-3880</issn><issn>1867-3899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkE1LAzEQhhdRsFavngOet0023Y9408VWwar4cfC0ZJOJpGwTTbJqbx49Sn9if4kr9eMoBCYMzzMzvFG0T_CAYJwMhQhikOAkwZhRuhH1SJHlMS0Y2_z9F3g72vF-hnHGaJ72ouWkaYX1MBy3TrWON-imrX1wPACa6tfQOvBIG3Rhzert48Q8aAPgQKJ74D4coisbwATdeco6NOXe62dA1-BsG7R5QFahMbh5x_CgrUHBonL1vizRsTUSja2br_vd-7lgN9pSvPGw91370d345LY8jc8vJ2fl0XksaJrTuJCAFa-LJMtJRrIcipoQyWgBI5kwCWqUQI4l4SORyVRJDooSoQjNM1Gzoqb96GA999HZpxZ8qGa2daZbWSV5mmGWjtK0owZrSjjrvQNVPTo9525REVx95V595V795t4JbC286AYW_9BVWd6Wf-4nSQyLvA</recordid><startdate>20221220</startdate><enddate>20221220</enddate><creator>Sannelli, Francesca</creator><creator>Gao, Sanni</creator><creator>Jensen, Pernille Rose</creator><creator>Meier, Sebastian</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4359-848X</orcidid><orcidid>https://orcid.org/0000-0003-3761-3217</orcidid><orcidid>https://orcid.org/0000-0001-7079-5759</orcidid></search><sort><creationdate>20221220</creationdate><title>Glucose/Furfural Substrate Mixtures in Non‐Engineered Yeast: Potential for Massive Rerouting of Fermentation to C−C Bond Formation on Furfural</title><author>Sannelli, Francesca ; Gao, Sanni ; Jensen, Pernille Rose ; Meier, Sebastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3573-8de0fab826716167e8b11d938e4d29def42e70d1a4c6d5fdaef31cf1376cb98b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acetaldehyde</topic><topic>Bonding</topic><topic>Catalysts</topic><topic>Conversion</topic><topic>C−C bond formation</topic><topic>Elongation</topic><topic>Ethanol</topic><topic>Fine chemicals</topic><topic>Furfural</topic><topic>Glucose</topic><topic>Lignocellulose</topic><topic>Mixtures</topic><topic>NMR</topic><topic>NMR spectroscopy</topic><topic>Nuclear magnetic resonance</topic><topic>Substrates</topic><topic>whole cell catalysis</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sannelli, Francesca</creatorcontrib><creatorcontrib>Gao, Sanni</creatorcontrib><creatorcontrib>Jensen, Pernille Rose</creatorcontrib><creatorcontrib>Meier, Sebastian</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><jtitle>ChemCatChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sannelli, Francesca</au><au>Gao, Sanni</au><au>Jensen, Pernille Rose</au><au>Meier, Sebastian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glucose/Furfural Substrate Mixtures in Non‐Engineered Yeast: Potential for Massive Rerouting of Fermentation to C−C Bond Formation on Furfural</atitle><jtitle>ChemCatChem</jtitle><date>2022-12-20</date><risdate>2022</risdate><volume>14</volume><issue>24</issue><epage>n/a</epage><issn>1867-3880</issn><eissn>1867-3899</eissn><abstract>Suitable mixtures of glucose and furfural may provide novel strategies for C−C bond formation on furfural due to the versatility of low‐cost biological catalysts. We use in‐cell NMR with non‐engineered commercial yeast as the catalyst to determine the interplay between furfural and glucose metabolism in non‐engineered yeast. The presence of furfural is shown to modulate kinetic barriers in glucose conversion and to favor the accumulation of acetaldehyde in situ. As a result, glucose carbons are remarkably strongly redirected towards C−C bond formation between furfural and a glucose‐derived C2 unit. In the presence of suitable glucose/furfural substrate mixtures in non‐engineered yeasts, glucose carbons can achieve relative influxes of at least 80 % into the C−C bond formation on furfural, compared to only 20 % into ethanol. Chain‐elongation of furfural by yeast thus seems a viable strategy for the upgrading of lignocellulosic biomass through concurrent conversion of furfural and glucose. The product is related to chemicals that already have found value in the fine chemical and pharmaceutical industries. Furfural and Glucose Conversion in Non‐Engineered Yeast: Glucose/furfural substrate mixtures can be concurrently upgraded by whole cell catalysis. Through in situ production and interception of pyruvate/acetaldehyde in non‐engineered yeast, such substrate mixtures can efficiently be used for C−C bond formation on furfural using whole‐cell catalysis, while ethanol and glycerol formation can be vastly suppressed.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cctc.202200933</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4359-848X</orcidid><orcidid>https://orcid.org/0000-0003-3761-3217</orcidid><orcidid>https://orcid.org/0000-0001-7079-5759</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1867-3880
ispartof ChemCatChem, 2022-12, Vol.14 (24), p.n/a
issn 1867-3880
1867-3899
language eng
recordid cdi_proquest_journals_2756095455
source Wiley Online Library Journals Frontfile Complete
subjects Acetaldehyde
Bonding
Catalysts
Conversion
C−C bond formation
Elongation
Ethanol
Fine chemicals
Furfural
Glucose
Lignocellulose
Mixtures
NMR
NMR spectroscopy
Nuclear magnetic resonance
Substrates
whole cell catalysis
Yeast
title Glucose/Furfural Substrate Mixtures in Non‐Engineered Yeast: Potential for Massive Rerouting of Fermentation to C−C Bond Formation on Furfural
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T03%3A09%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glucose/Furfural%20Substrate%20Mixtures%20in%20Non%E2%80%90Engineered%20Yeast:%20Potential%20for%20Massive%20Rerouting%20of%20Fermentation%20to%20C%E2%88%92C%20Bond%20Formation%20on%20Furfural&rft.jtitle=ChemCatChem&rft.au=Sannelli,%20Francesca&rft.date=2022-12-20&rft.volume=14&rft.issue=24&rft.epage=n/a&rft.issn=1867-3880&rft.eissn=1867-3899&rft_id=info:doi/10.1002/cctc.202200933&rft_dat=%3Cproquest_cross%3E2756095455%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2756095455&rft_id=info:pmid/&rfr_iscdi=true