Occupancy Grid Based Reactive Planner

This paper proposes a perception and path planning pipeline for autonomous racing in an unknown bounded course. The pipeline was initially created for the 2021 evGrandPrix autonomous division and was further improved for the 2022 event, both of which resulting in first place finishes. Using a simple...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-12
Hauptverfasser: Hall, Benjamin, Goeden, Andrew, Reddy, Sahan, Gallion, Timothy, Koduru, Charles, M Hassan Tanveer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Hall, Benjamin
Goeden, Andrew
Reddy, Sahan
Gallion, Timothy
Koduru, Charles
M Hassan Tanveer
description This paper proposes a perception and path planning pipeline for autonomous racing in an unknown bounded course. The pipeline was initially created for the 2021 evGrandPrix autonomous division and was further improved for the 2022 event, both of which resulting in first place finishes. Using a simple LiDAR-based perception pipeline feeding into an occupancy grid based expansion algorithm, we determine a goal point to drive. This pipeline successfully achieved reliable and consistent laps in addition with occupancy grid algorithm to know the ways around a cone-defined track with an averaging speeds of 6.85 m/s over a distance 434.2 meters for a total lap time of 63.4 seconds.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2755993140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2755993140</sourcerecordid><originalsourceid>FETCH-proquest_journals_27559931403</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ9U9OLi1IzEuuVHAvykxRcEosTk1RCEpNTC7JLEtVCMhJzMtLLeJhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjc1NTS0tjQxMDY-JUAQDQdy6R</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2755993140</pqid></control><display><type>article</type><title>Occupancy Grid Based Reactive Planner</title><source>Free E- Journals</source><creator>Hall, Benjamin ; Goeden, Andrew ; Reddy, Sahan ; Gallion, Timothy ; Koduru, Charles ; M Hassan Tanveer</creator><creatorcontrib>Hall, Benjamin ; Goeden, Andrew ; Reddy, Sahan ; Gallion, Timothy ; Koduru, Charles ; M Hassan Tanveer</creatorcontrib><description>This paper proposes a perception and path planning pipeline for autonomous racing in an unknown bounded course. The pipeline was initially created for the 2021 evGrandPrix autonomous division and was further improved for the 2022 event, both of which resulting in first place finishes. Using a simple LiDAR-based perception pipeline feeding into an occupancy grid based expansion algorithm, we determine a goal point to drive. This pipeline successfully achieved reliable and consistent laps in addition with occupancy grid algorithm to know the ways around a cone-defined track with an averaging speeds of 6.85 m/s over a distance 434.2 meters for a total lap time of 63.4 seconds.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Finishes ; Path planning ; Perception ; Racing</subject><ispartof>arXiv.org, 2022-12</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Hall, Benjamin</creatorcontrib><creatorcontrib>Goeden, Andrew</creatorcontrib><creatorcontrib>Reddy, Sahan</creatorcontrib><creatorcontrib>Gallion, Timothy</creatorcontrib><creatorcontrib>Koduru, Charles</creatorcontrib><creatorcontrib>M Hassan Tanveer</creatorcontrib><title>Occupancy Grid Based Reactive Planner</title><title>arXiv.org</title><description>This paper proposes a perception and path planning pipeline for autonomous racing in an unknown bounded course. The pipeline was initially created for the 2021 evGrandPrix autonomous division and was further improved for the 2022 event, both of which resulting in first place finishes. Using a simple LiDAR-based perception pipeline feeding into an occupancy grid based expansion algorithm, we determine a goal point to drive. This pipeline successfully achieved reliable and consistent laps in addition with occupancy grid algorithm to know the ways around a cone-defined track with an averaging speeds of 6.85 m/s over a distance 434.2 meters for a total lap time of 63.4 seconds.</description><subject>Algorithms</subject><subject>Finishes</subject><subject>Path planning</subject><subject>Perception</subject><subject>Racing</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ9U9OLi1IzEuuVHAvykxRcEosTk1RCEpNTC7JLEtVCMhJzMtLLeJhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjc1NTS0tjQxMDY-JUAQDQdy6R</recordid><startdate>20221217</startdate><enddate>20221217</enddate><creator>Hall, Benjamin</creator><creator>Goeden, Andrew</creator><creator>Reddy, Sahan</creator><creator>Gallion, Timothy</creator><creator>Koduru, Charles</creator><creator>M Hassan Tanveer</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221217</creationdate><title>Occupancy Grid Based Reactive Planner</title><author>Hall, Benjamin ; Goeden, Andrew ; Reddy, Sahan ; Gallion, Timothy ; Koduru, Charles ; M Hassan Tanveer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27559931403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Finishes</topic><topic>Path planning</topic><topic>Perception</topic><topic>Racing</topic><toplevel>online_resources</toplevel><creatorcontrib>Hall, Benjamin</creatorcontrib><creatorcontrib>Goeden, Andrew</creatorcontrib><creatorcontrib>Reddy, Sahan</creatorcontrib><creatorcontrib>Gallion, Timothy</creatorcontrib><creatorcontrib>Koduru, Charles</creatorcontrib><creatorcontrib>M Hassan Tanveer</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hall, Benjamin</au><au>Goeden, Andrew</au><au>Reddy, Sahan</au><au>Gallion, Timothy</au><au>Koduru, Charles</au><au>M Hassan Tanveer</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Occupancy Grid Based Reactive Planner</atitle><jtitle>arXiv.org</jtitle><date>2022-12-17</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>This paper proposes a perception and path planning pipeline for autonomous racing in an unknown bounded course. The pipeline was initially created for the 2021 evGrandPrix autonomous division and was further improved for the 2022 event, both of which resulting in first place finishes. Using a simple LiDAR-based perception pipeline feeding into an occupancy grid based expansion algorithm, we determine a goal point to drive. This pipeline successfully achieved reliable and consistent laps in addition with occupancy grid algorithm to know the ways around a cone-defined track with an averaging speeds of 6.85 m/s over a distance 434.2 meters for a total lap time of 63.4 seconds.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2755993140
source Free E- Journals
subjects Algorithms
Finishes
Path planning
Perception
Racing
title Occupancy Grid Based Reactive Planner
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T01%3A26%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Occupancy%20Grid%20Based%20Reactive%20Planner&rft.jtitle=arXiv.org&rft.au=Hall,%20Benjamin&rft.date=2022-12-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2755993140%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2755993140&rft_id=info:pmid/&rfr_iscdi=true