Occupancy Grid Based Reactive Planner
This paper proposes a perception and path planning pipeline for autonomous racing in an unknown bounded course. The pipeline was initially created for the 2021 evGrandPrix autonomous division and was further improved for the 2022 event, both of which resulting in first place finishes. Using a simple...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-12 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Hall, Benjamin Goeden, Andrew Reddy, Sahan Gallion, Timothy Koduru, Charles M Hassan Tanveer |
description | This paper proposes a perception and path planning pipeline for autonomous racing in an unknown bounded course. The pipeline was initially created for the 2021 evGrandPrix autonomous division and was further improved for the 2022 event, both of which resulting in first place finishes. Using a simple LiDAR-based perception pipeline feeding into an occupancy grid based expansion algorithm, we determine a goal point to drive. This pipeline successfully achieved reliable and consistent laps in addition with occupancy grid algorithm to know the ways around a cone-defined track with an averaging speeds of 6.85 m/s over a distance 434.2 meters for a total lap time of 63.4 seconds. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2755993140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2755993140</sourcerecordid><originalsourceid>FETCH-proquest_journals_27559931403</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ9U9OLi1IzEuuVHAvykxRcEosTk1RCEpNTC7JLEtVCMhJzMtLLeJhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjc1NTS0tjQxMDY-JUAQDQdy6R</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2755993140</pqid></control><display><type>article</type><title>Occupancy Grid Based Reactive Planner</title><source>Free E- Journals</source><creator>Hall, Benjamin ; Goeden, Andrew ; Reddy, Sahan ; Gallion, Timothy ; Koduru, Charles ; M Hassan Tanveer</creator><creatorcontrib>Hall, Benjamin ; Goeden, Andrew ; Reddy, Sahan ; Gallion, Timothy ; Koduru, Charles ; M Hassan Tanveer</creatorcontrib><description>This paper proposes a perception and path planning pipeline for autonomous racing in an unknown bounded course. The pipeline was initially created for the 2021 evGrandPrix autonomous division and was further improved for the 2022 event, both of which resulting in first place finishes. Using a simple LiDAR-based perception pipeline feeding into an occupancy grid based expansion algorithm, we determine a goal point to drive. This pipeline successfully achieved reliable and consistent laps in addition with occupancy grid algorithm to know the ways around a cone-defined track with an averaging speeds of 6.85 m/s over a distance 434.2 meters for a total lap time of 63.4 seconds.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Finishes ; Path planning ; Perception ; Racing</subject><ispartof>arXiv.org, 2022-12</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Hall, Benjamin</creatorcontrib><creatorcontrib>Goeden, Andrew</creatorcontrib><creatorcontrib>Reddy, Sahan</creatorcontrib><creatorcontrib>Gallion, Timothy</creatorcontrib><creatorcontrib>Koduru, Charles</creatorcontrib><creatorcontrib>M Hassan Tanveer</creatorcontrib><title>Occupancy Grid Based Reactive Planner</title><title>arXiv.org</title><description>This paper proposes a perception and path planning pipeline for autonomous racing in an unknown bounded course. The pipeline was initially created for the 2021 evGrandPrix autonomous division and was further improved for the 2022 event, both of which resulting in first place finishes. Using a simple LiDAR-based perception pipeline feeding into an occupancy grid based expansion algorithm, we determine a goal point to drive. This pipeline successfully achieved reliable and consistent laps in addition with occupancy grid algorithm to know the ways around a cone-defined track with an averaging speeds of 6.85 m/s over a distance 434.2 meters for a total lap time of 63.4 seconds.</description><subject>Algorithms</subject><subject>Finishes</subject><subject>Path planning</subject><subject>Perception</subject><subject>Racing</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ9U9OLi1IzEuuVHAvykxRcEosTk1RCEpNTC7JLEtVCMhJzMtLLeJhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjc1NTS0tjQxMDY-JUAQDQdy6R</recordid><startdate>20221217</startdate><enddate>20221217</enddate><creator>Hall, Benjamin</creator><creator>Goeden, Andrew</creator><creator>Reddy, Sahan</creator><creator>Gallion, Timothy</creator><creator>Koduru, Charles</creator><creator>M Hassan Tanveer</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221217</creationdate><title>Occupancy Grid Based Reactive Planner</title><author>Hall, Benjamin ; Goeden, Andrew ; Reddy, Sahan ; Gallion, Timothy ; Koduru, Charles ; M Hassan Tanveer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27559931403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Finishes</topic><topic>Path planning</topic><topic>Perception</topic><topic>Racing</topic><toplevel>online_resources</toplevel><creatorcontrib>Hall, Benjamin</creatorcontrib><creatorcontrib>Goeden, Andrew</creatorcontrib><creatorcontrib>Reddy, Sahan</creatorcontrib><creatorcontrib>Gallion, Timothy</creatorcontrib><creatorcontrib>Koduru, Charles</creatorcontrib><creatorcontrib>M Hassan Tanveer</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hall, Benjamin</au><au>Goeden, Andrew</au><au>Reddy, Sahan</au><au>Gallion, Timothy</au><au>Koduru, Charles</au><au>M Hassan Tanveer</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Occupancy Grid Based Reactive Planner</atitle><jtitle>arXiv.org</jtitle><date>2022-12-17</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>This paper proposes a perception and path planning pipeline for autonomous racing in an unknown bounded course. The pipeline was initially created for the 2021 evGrandPrix autonomous division and was further improved for the 2022 event, both of which resulting in first place finishes. Using a simple LiDAR-based perception pipeline feeding into an occupancy grid based expansion algorithm, we determine a goal point to drive. This pipeline successfully achieved reliable and consistent laps in addition with occupancy grid algorithm to know the ways around a cone-defined track with an averaging speeds of 6.85 m/s over a distance 434.2 meters for a total lap time of 63.4 seconds.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2755993140 |
source | Free E- Journals |
subjects | Algorithms Finishes Path planning Perception Racing |
title | Occupancy Grid Based Reactive Planner |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T01%3A26%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Occupancy%20Grid%20Based%20Reactive%20Planner&rft.jtitle=arXiv.org&rft.au=Hall,%20Benjamin&rft.date=2022-12-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2755993140%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2755993140&rft_id=info:pmid/&rfr_iscdi=true |