Discovering Language Model Behaviors with Model-Written Evaluations

As language models (LMs) scale, they develop many novel behaviors, good and bad, exacerbating the need to evaluate how they behave. Prior work creates evaluations with crowdwork (which is time-consuming and expensive) or existing data sources (which are not always available). Here, we automatically...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-12
Hauptverfasser: Perez, Ethan, Ringer, Sam, Lukošiūtė, Kamilė, Nguyen, Karina, Chen, Edwin, Scott, Heiner, Pettit, Craig, Olsson, Catherine, Kundu, Sandipan, Kadavath, Saurav, Jones, Andy, Chen, Anna, Mann, Ben, Israel, Brian, Seethor, Bryan, McKinnon, Cameron, Olah, Christopher, Yan, Da, Amodei, Daniela, Amodei, Dario, Drain, Dawn, Li, Dustin, Tran-Johnson, Eli, Khundadze, Guro, Jackson Kernion, Landis, James, Kerr, Jamie, Mueller, Jared, Jeeyoon Hyun, Landau, Joshua, Ndousse, Kamal, Goldberg, Landon, Lovitt, Liane, Lucas, Martin, Sellitto, Michael, Zhang, Miranda, Kingsland, Neerav, Nelson Elhage, Nicholas, Joseph, Mercado, Noemí, DasSarma, Nova, Rausch, Oliver, Larson, Robin, McCandlish, Sam, Johnston, Scott, Kravec, Shauna, Sheer El Showk, Lanham, Tamera, Telleen-Lawton, Timothy, Brown, Tom, Henighan, Tom, Hume, Tristan, Bai, Yuntao, Hatfield-Dodds, Zac, Clark, Jack, Bowman, Samuel R, Askell, Amanda, Grosse, Roger, Hernandez, Danny, Ganguli, Deep, Hubinger, Evan, Schiefer, Nicholas, Kaplan, Jared
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Perez, Ethan
Ringer, Sam
Lukošiūtė, Kamilė
Nguyen, Karina
Chen, Edwin
Scott, Heiner
Pettit, Craig
Olsson, Catherine
Kundu, Sandipan
Kadavath, Saurav
Jones, Andy
Chen, Anna
Mann, Ben
Israel, Brian
Seethor, Bryan
McKinnon, Cameron
Olah, Christopher
Yan, Da
Amodei, Daniela
Amodei, Dario
Drain, Dawn
Li, Dustin
Tran-Johnson, Eli
Khundadze, Guro
Jackson Kernion
Landis, James
Kerr, Jamie
Mueller, Jared
Jeeyoon Hyun
Landau, Joshua
Ndousse, Kamal
Goldberg, Landon
Lovitt, Liane
Lucas, Martin
Sellitto, Michael
Zhang, Miranda
Kingsland, Neerav
Nelson Elhage
Nicholas, Joseph
Mercado, Noemí
DasSarma, Nova
Rausch, Oliver
Larson, Robin
McCandlish, Sam
Johnston, Scott
Kravec, Shauna
Sheer El Showk
Lanham, Tamera
Telleen-Lawton, Timothy
Brown, Tom
Henighan, Tom
Hume, Tristan
Bai, Yuntao
Hatfield-Dodds, Zac
Clark, Jack
Bowman, Samuel R
Askell, Amanda
Grosse, Roger
Hernandez, Danny
Ganguli, Deep
Hubinger, Evan
Schiefer, Nicholas
Kaplan, Jared
description As language models (LMs) scale, they develop many novel behaviors, good and bad, exacerbating the need to evaluate how they behave. Prior work creates evaluations with crowdwork (which is time-consuming and expensive) or existing data sources (which are not always available). Here, we automatically generate evaluations with LMs. We explore approaches with varying amounts of human effort, from instructing LMs to write yes/no questions to making complex Winogender schemas with multiple stages of LM-based generation and filtering. Crowdworkers rate the examples as highly relevant and agree with 90-100% of labels, sometimes more so than corresponding human-written datasets. We generate 154 datasets and discover new cases of inverse scaling where LMs get worse with size. Larger LMs repeat back a dialog user's preferred answer ("sycophancy") and express greater desire to pursue concerning goals like resource acquisition and goal preservation. We also find some of the first examples of inverse scaling in RL from Human Feedback (RLHF), where more RLHF makes LMs worse. For example, RLHF makes LMs express stronger political views (on gun rights and immigration) and a greater desire to avoid shut down. Overall, LM-written evaluations are high-quality and let us quickly discover many novel LM behaviors.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2755992596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2755992596</sourcerecordid><originalsourceid>FETCH-proquest_journals_27559925963</originalsourceid><addsrcrecordid>eNqNikEKwjAQAIMgWLR_CHgO1I1p7dVa8aA3wWMJurYpJdFsUr-voA_wNDAzE5aAlCuxWQPMWErUZ1kGeQFKyYRVO0NXN6I3tuVHbduoW-Qnd8OBb7HTo3Ge-MuE7ivFxZsQ0PJ61EPUwThLCza964Ew_XHOlvv6XB3Ew7tnRApN76K3n9RAoVRZgipz-d_1BhJWOoU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2755992596</pqid></control><display><type>article</type><title>Discovering Language Model Behaviors with Model-Written Evaluations</title><source>Free E- Journals</source><creator>Perez, Ethan ; Ringer, Sam ; Lukošiūtė, Kamilė ; Nguyen, Karina ; Chen, Edwin ; Scott, Heiner ; Pettit, Craig ; Olsson, Catherine ; Kundu, Sandipan ; Kadavath, Saurav ; Jones, Andy ; Chen, Anna ; Mann, Ben ; Israel, Brian ; Seethor, Bryan ; McKinnon, Cameron ; Olah, Christopher ; Yan, Da ; Amodei, Daniela ; Amodei, Dario ; Drain, Dawn ; Li, Dustin ; Tran-Johnson, Eli ; Khundadze, Guro ; Jackson Kernion ; Landis, James ; Kerr, Jamie ; Mueller, Jared ; Jeeyoon Hyun ; Landau, Joshua ; Ndousse, Kamal ; Goldberg, Landon ; Lovitt, Liane ; Lucas, Martin ; Sellitto, Michael ; Zhang, Miranda ; Kingsland, Neerav ; Nelson Elhage ; Nicholas, Joseph ; Mercado, Noemí ; DasSarma, Nova ; Rausch, Oliver ; Larson, Robin ; McCandlish, Sam ; Johnston, Scott ; Kravec, Shauna ; Sheer El Showk ; Lanham, Tamera ; Telleen-Lawton, Timothy ; Brown, Tom ; Henighan, Tom ; Hume, Tristan ; Bai, Yuntao ; Hatfield-Dodds, Zac ; Clark, Jack ; Bowman, Samuel R ; Askell, Amanda ; Grosse, Roger ; Hernandez, Danny ; Ganguli, Deep ; Hubinger, Evan ; Schiefer, Nicholas ; Kaplan, Jared</creator><creatorcontrib>Perez, Ethan ; Ringer, Sam ; Lukošiūtė, Kamilė ; Nguyen, Karina ; Chen, Edwin ; Scott, Heiner ; Pettit, Craig ; Olsson, Catherine ; Kundu, Sandipan ; Kadavath, Saurav ; Jones, Andy ; Chen, Anna ; Mann, Ben ; Israel, Brian ; Seethor, Bryan ; McKinnon, Cameron ; Olah, Christopher ; Yan, Da ; Amodei, Daniela ; Amodei, Dario ; Drain, Dawn ; Li, Dustin ; Tran-Johnson, Eli ; Khundadze, Guro ; Jackson Kernion ; Landis, James ; Kerr, Jamie ; Mueller, Jared ; Jeeyoon Hyun ; Landau, Joshua ; Ndousse, Kamal ; Goldberg, Landon ; Lovitt, Liane ; Lucas, Martin ; Sellitto, Michael ; Zhang, Miranda ; Kingsland, Neerav ; Nelson Elhage ; Nicholas, Joseph ; Mercado, Noemí ; DasSarma, Nova ; Rausch, Oliver ; Larson, Robin ; McCandlish, Sam ; Johnston, Scott ; Kravec, Shauna ; Sheer El Showk ; Lanham, Tamera ; Telleen-Lawton, Timothy ; Brown, Tom ; Henighan, Tom ; Hume, Tristan ; Bai, Yuntao ; Hatfield-Dodds, Zac ; Clark, Jack ; Bowman, Samuel R ; Askell, Amanda ; Grosse, Roger ; Hernandez, Danny ; Ganguli, Deep ; Hubinger, Evan ; Schiefer, Nicholas ; Kaplan, Jared</creatorcontrib><description>As language models (LMs) scale, they develop many novel behaviors, good and bad, exacerbating the need to evaluate how they behave. Prior work creates evaluations with crowdwork (which is time-consuming and expensive) or existing data sources (which are not always available). Here, we automatically generate evaluations with LMs. We explore approaches with varying amounts of human effort, from instructing LMs to write yes/no questions to making complex Winogender schemas with multiple stages of LM-based generation and filtering. Crowdworkers rate the examples as highly relevant and agree with 90-100% of labels, sometimes more so than corresponding human-written datasets. We generate 154 datasets and discover new cases of inverse scaling where LMs get worse with size. Larger LMs repeat back a dialog user's preferred answer ("sycophancy") and express greater desire to pursue concerning goals like resource acquisition and goal preservation. We also find some of the first examples of inverse scaling in RL from Human Feedback (RLHF), where more RLHF makes LMs worse. For example, RLHF makes LMs express stronger political views (on gun rights and immigration) and a greater desire to avoid shut down. Overall, LM-written evaluations are high-quality and let us quickly discover many novel LM behaviors.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Datasets ; Shutdowns</subject><ispartof>arXiv.org, 2022-12</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Perez, Ethan</creatorcontrib><creatorcontrib>Ringer, Sam</creatorcontrib><creatorcontrib>Lukošiūtė, Kamilė</creatorcontrib><creatorcontrib>Nguyen, Karina</creatorcontrib><creatorcontrib>Chen, Edwin</creatorcontrib><creatorcontrib>Scott, Heiner</creatorcontrib><creatorcontrib>Pettit, Craig</creatorcontrib><creatorcontrib>Olsson, Catherine</creatorcontrib><creatorcontrib>Kundu, Sandipan</creatorcontrib><creatorcontrib>Kadavath, Saurav</creatorcontrib><creatorcontrib>Jones, Andy</creatorcontrib><creatorcontrib>Chen, Anna</creatorcontrib><creatorcontrib>Mann, Ben</creatorcontrib><creatorcontrib>Israel, Brian</creatorcontrib><creatorcontrib>Seethor, Bryan</creatorcontrib><creatorcontrib>McKinnon, Cameron</creatorcontrib><creatorcontrib>Olah, Christopher</creatorcontrib><creatorcontrib>Yan, Da</creatorcontrib><creatorcontrib>Amodei, Daniela</creatorcontrib><creatorcontrib>Amodei, Dario</creatorcontrib><creatorcontrib>Drain, Dawn</creatorcontrib><creatorcontrib>Li, Dustin</creatorcontrib><creatorcontrib>Tran-Johnson, Eli</creatorcontrib><creatorcontrib>Khundadze, Guro</creatorcontrib><creatorcontrib>Jackson Kernion</creatorcontrib><creatorcontrib>Landis, James</creatorcontrib><creatorcontrib>Kerr, Jamie</creatorcontrib><creatorcontrib>Mueller, Jared</creatorcontrib><creatorcontrib>Jeeyoon Hyun</creatorcontrib><creatorcontrib>Landau, Joshua</creatorcontrib><creatorcontrib>Ndousse, Kamal</creatorcontrib><creatorcontrib>Goldberg, Landon</creatorcontrib><creatorcontrib>Lovitt, Liane</creatorcontrib><creatorcontrib>Lucas, Martin</creatorcontrib><creatorcontrib>Sellitto, Michael</creatorcontrib><creatorcontrib>Zhang, Miranda</creatorcontrib><creatorcontrib>Kingsland, Neerav</creatorcontrib><creatorcontrib>Nelson Elhage</creatorcontrib><creatorcontrib>Nicholas, Joseph</creatorcontrib><creatorcontrib>Mercado, Noemí</creatorcontrib><creatorcontrib>DasSarma, Nova</creatorcontrib><creatorcontrib>Rausch, Oliver</creatorcontrib><creatorcontrib>Larson, Robin</creatorcontrib><creatorcontrib>McCandlish, Sam</creatorcontrib><creatorcontrib>Johnston, Scott</creatorcontrib><creatorcontrib>Kravec, Shauna</creatorcontrib><creatorcontrib>Sheer El Showk</creatorcontrib><creatorcontrib>Lanham, Tamera</creatorcontrib><creatorcontrib>Telleen-Lawton, Timothy</creatorcontrib><creatorcontrib>Brown, Tom</creatorcontrib><creatorcontrib>Henighan, Tom</creatorcontrib><creatorcontrib>Hume, Tristan</creatorcontrib><creatorcontrib>Bai, Yuntao</creatorcontrib><creatorcontrib>Hatfield-Dodds, Zac</creatorcontrib><creatorcontrib>Clark, Jack</creatorcontrib><creatorcontrib>Bowman, Samuel R</creatorcontrib><creatorcontrib>Askell, Amanda</creatorcontrib><creatorcontrib>Grosse, Roger</creatorcontrib><creatorcontrib>Hernandez, Danny</creatorcontrib><creatorcontrib>Ganguli, Deep</creatorcontrib><creatorcontrib>Hubinger, Evan</creatorcontrib><creatorcontrib>Schiefer, Nicholas</creatorcontrib><creatorcontrib>Kaplan, Jared</creatorcontrib><title>Discovering Language Model Behaviors with Model-Written Evaluations</title><title>arXiv.org</title><description>As language models (LMs) scale, they develop many novel behaviors, good and bad, exacerbating the need to evaluate how they behave. Prior work creates evaluations with crowdwork (which is time-consuming and expensive) or existing data sources (which are not always available). Here, we automatically generate evaluations with LMs. We explore approaches with varying amounts of human effort, from instructing LMs to write yes/no questions to making complex Winogender schemas with multiple stages of LM-based generation and filtering. Crowdworkers rate the examples as highly relevant and agree with 90-100% of labels, sometimes more so than corresponding human-written datasets. We generate 154 datasets and discover new cases of inverse scaling where LMs get worse with size. Larger LMs repeat back a dialog user's preferred answer ("sycophancy") and express greater desire to pursue concerning goals like resource acquisition and goal preservation. We also find some of the first examples of inverse scaling in RL from Human Feedback (RLHF), where more RLHF makes LMs worse. For example, RLHF makes LMs express stronger political views (on gun rights and immigration) and a greater desire to avoid shut down. Overall, LM-written evaluations are high-quality and let us quickly discover many novel LM behaviors.</description><subject>Datasets</subject><subject>Shutdowns</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNikEKwjAQAIMgWLR_CHgO1I1p7dVa8aA3wWMJurYpJdFsUr-voA_wNDAzE5aAlCuxWQPMWErUZ1kGeQFKyYRVO0NXN6I3tuVHbduoW-Qnd8OBb7HTo3Ge-MuE7ivFxZsQ0PJ61EPUwThLCza964Ew_XHOlvv6XB3Ew7tnRApN76K3n9RAoVRZgipz-d_1BhJWOoU</recordid><startdate>20221219</startdate><enddate>20221219</enddate><creator>Perez, Ethan</creator><creator>Ringer, Sam</creator><creator>Lukošiūtė, Kamilė</creator><creator>Nguyen, Karina</creator><creator>Chen, Edwin</creator><creator>Scott, Heiner</creator><creator>Pettit, Craig</creator><creator>Olsson, Catherine</creator><creator>Kundu, Sandipan</creator><creator>Kadavath, Saurav</creator><creator>Jones, Andy</creator><creator>Chen, Anna</creator><creator>Mann, Ben</creator><creator>Israel, Brian</creator><creator>Seethor, Bryan</creator><creator>McKinnon, Cameron</creator><creator>Olah, Christopher</creator><creator>Yan, Da</creator><creator>Amodei, Daniela</creator><creator>Amodei, Dario</creator><creator>Drain, Dawn</creator><creator>Li, Dustin</creator><creator>Tran-Johnson, Eli</creator><creator>Khundadze, Guro</creator><creator>Jackson Kernion</creator><creator>Landis, James</creator><creator>Kerr, Jamie</creator><creator>Mueller, Jared</creator><creator>Jeeyoon Hyun</creator><creator>Landau, Joshua</creator><creator>Ndousse, Kamal</creator><creator>Goldberg, Landon</creator><creator>Lovitt, Liane</creator><creator>Lucas, Martin</creator><creator>Sellitto, Michael</creator><creator>Zhang, Miranda</creator><creator>Kingsland, Neerav</creator><creator>Nelson Elhage</creator><creator>Nicholas, Joseph</creator><creator>Mercado, Noemí</creator><creator>DasSarma, Nova</creator><creator>Rausch, Oliver</creator><creator>Larson, Robin</creator><creator>McCandlish, Sam</creator><creator>Johnston, Scott</creator><creator>Kravec, Shauna</creator><creator>Sheer El Showk</creator><creator>Lanham, Tamera</creator><creator>Telleen-Lawton, Timothy</creator><creator>Brown, Tom</creator><creator>Henighan, Tom</creator><creator>Hume, Tristan</creator><creator>Bai, Yuntao</creator><creator>Hatfield-Dodds, Zac</creator><creator>Clark, Jack</creator><creator>Bowman, Samuel R</creator><creator>Askell, Amanda</creator><creator>Grosse, Roger</creator><creator>Hernandez, Danny</creator><creator>Ganguli, Deep</creator><creator>Hubinger, Evan</creator><creator>Schiefer, Nicholas</creator><creator>Kaplan, Jared</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221219</creationdate><title>Discovering Language Model Behaviors with Model-Written Evaluations</title><author>Perez, Ethan ; Ringer, Sam ; Lukošiūtė, Kamilė ; Nguyen, Karina ; Chen, Edwin ; Scott, Heiner ; Pettit, Craig ; Olsson, Catherine ; Kundu, Sandipan ; Kadavath, Saurav ; Jones, Andy ; Chen, Anna ; Mann, Ben ; Israel, Brian ; Seethor, Bryan ; McKinnon, Cameron ; Olah, Christopher ; Yan, Da ; Amodei, Daniela ; Amodei, Dario ; Drain, Dawn ; Li, Dustin ; Tran-Johnson, Eli ; Khundadze, Guro ; Jackson Kernion ; Landis, James ; Kerr, Jamie ; Mueller, Jared ; Jeeyoon Hyun ; Landau, Joshua ; Ndousse, Kamal ; Goldberg, Landon ; Lovitt, Liane ; Lucas, Martin ; Sellitto, Michael ; Zhang, Miranda ; Kingsland, Neerav ; Nelson Elhage ; Nicholas, Joseph ; Mercado, Noemí ; DasSarma, Nova ; Rausch, Oliver ; Larson, Robin ; McCandlish, Sam ; Johnston, Scott ; Kravec, Shauna ; Sheer El Showk ; Lanham, Tamera ; Telleen-Lawton, Timothy ; Brown, Tom ; Henighan, Tom ; Hume, Tristan ; Bai, Yuntao ; Hatfield-Dodds, Zac ; Clark, Jack ; Bowman, Samuel R ; Askell, Amanda ; Grosse, Roger ; Hernandez, Danny ; Ganguli, Deep ; Hubinger, Evan ; Schiefer, Nicholas ; Kaplan, Jared</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27559925963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Datasets</topic><topic>Shutdowns</topic><toplevel>online_resources</toplevel><creatorcontrib>Perez, Ethan</creatorcontrib><creatorcontrib>Ringer, Sam</creatorcontrib><creatorcontrib>Lukošiūtė, Kamilė</creatorcontrib><creatorcontrib>Nguyen, Karina</creatorcontrib><creatorcontrib>Chen, Edwin</creatorcontrib><creatorcontrib>Scott, Heiner</creatorcontrib><creatorcontrib>Pettit, Craig</creatorcontrib><creatorcontrib>Olsson, Catherine</creatorcontrib><creatorcontrib>Kundu, Sandipan</creatorcontrib><creatorcontrib>Kadavath, Saurav</creatorcontrib><creatorcontrib>Jones, Andy</creatorcontrib><creatorcontrib>Chen, Anna</creatorcontrib><creatorcontrib>Mann, Ben</creatorcontrib><creatorcontrib>Israel, Brian</creatorcontrib><creatorcontrib>Seethor, Bryan</creatorcontrib><creatorcontrib>McKinnon, Cameron</creatorcontrib><creatorcontrib>Olah, Christopher</creatorcontrib><creatorcontrib>Yan, Da</creatorcontrib><creatorcontrib>Amodei, Daniela</creatorcontrib><creatorcontrib>Amodei, Dario</creatorcontrib><creatorcontrib>Drain, Dawn</creatorcontrib><creatorcontrib>Li, Dustin</creatorcontrib><creatorcontrib>Tran-Johnson, Eli</creatorcontrib><creatorcontrib>Khundadze, Guro</creatorcontrib><creatorcontrib>Jackson Kernion</creatorcontrib><creatorcontrib>Landis, James</creatorcontrib><creatorcontrib>Kerr, Jamie</creatorcontrib><creatorcontrib>Mueller, Jared</creatorcontrib><creatorcontrib>Jeeyoon Hyun</creatorcontrib><creatorcontrib>Landau, Joshua</creatorcontrib><creatorcontrib>Ndousse, Kamal</creatorcontrib><creatorcontrib>Goldberg, Landon</creatorcontrib><creatorcontrib>Lovitt, Liane</creatorcontrib><creatorcontrib>Lucas, Martin</creatorcontrib><creatorcontrib>Sellitto, Michael</creatorcontrib><creatorcontrib>Zhang, Miranda</creatorcontrib><creatorcontrib>Kingsland, Neerav</creatorcontrib><creatorcontrib>Nelson Elhage</creatorcontrib><creatorcontrib>Nicholas, Joseph</creatorcontrib><creatorcontrib>Mercado, Noemí</creatorcontrib><creatorcontrib>DasSarma, Nova</creatorcontrib><creatorcontrib>Rausch, Oliver</creatorcontrib><creatorcontrib>Larson, Robin</creatorcontrib><creatorcontrib>McCandlish, Sam</creatorcontrib><creatorcontrib>Johnston, Scott</creatorcontrib><creatorcontrib>Kravec, Shauna</creatorcontrib><creatorcontrib>Sheer El Showk</creatorcontrib><creatorcontrib>Lanham, Tamera</creatorcontrib><creatorcontrib>Telleen-Lawton, Timothy</creatorcontrib><creatorcontrib>Brown, Tom</creatorcontrib><creatorcontrib>Henighan, Tom</creatorcontrib><creatorcontrib>Hume, Tristan</creatorcontrib><creatorcontrib>Bai, Yuntao</creatorcontrib><creatorcontrib>Hatfield-Dodds, Zac</creatorcontrib><creatorcontrib>Clark, Jack</creatorcontrib><creatorcontrib>Bowman, Samuel R</creatorcontrib><creatorcontrib>Askell, Amanda</creatorcontrib><creatorcontrib>Grosse, Roger</creatorcontrib><creatorcontrib>Hernandez, Danny</creatorcontrib><creatorcontrib>Ganguli, Deep</creatorcontrib><creatorcontrib>Hubinger, Evan</creatorcontrib><creatorcontrib>Schiefer, Nicholas</creatorcontrib><creatorcontrib>Kaplan, Jared</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perez, Ethan</au><au>Ringer, Sam</au><au>Lukošiūtė, Kamilė</au><au>Nguyen, Karina</au><au>Chen, Edwin</au><au>Scott, Heiner</au><au>Pettit, Craig</au><au>Olsson, Catherine</au><au>Kundu, Sandipan</au><au>Kadavath, Saurav</au><au>Jones, Andy</au><au>Chen, Anna</au><au>Mann, Ben</au><au>Israel, Brian</au><au>Seethor, Bryan</au><au>McKinnon, Cameron</au><au>Olah, Christopher</au><au>Yan, Da</au><au>Amodei, Daniela</au><au>Amodei, Dario</au><au>Drain, Dawn</au><au>Li, Dustin</au><au>Tran-Johnson, Eli</au><au>Khundadze, Guro</au><au>Jackson Kernion</au><au>Landis, James</au><au>Kerr, Jamie</au><au>Mueller, Jared</au><au>Jeeyoon Hyun</au><au>Landau, Joshua</au><au>Ndousse, Kamal</au><au>Goldberg, Landon</au><au>Lovitt, Liane</au><au>Lucas, Martin</au><au>Sellitto, Michael</au><au>Zhang, Miranda</au><au>Kingsland, Neerav</au><au>Nelson Elhage</au><au>Nicholas, Joseph</au><au>Mercado, Noemí</au><au>DasSarma, Nova</au><au>Rausch, Oliver</au><au>Larson, Robin</au><au>McCandlish, Sam</au><au>Johnston, Scott</au><au>Kravec, Shauna</au><au>Sheer El Showk</au><au>Lanham, Tamera</au><au>Telleen-Lawton, Timothy</au><au>Brown, Tom</au><au>Henighan, Tom</au><au>Hume, Tristan</au><au>Bai, Yuntao</au><au>Hatfield-Dodds, Zac</au><au>Clark, Jack</au><au>Bowman, Samuel R</au><au>Askell, Amanda</au><au>Grosse, Roger</au><au>Hernandez, Danny</au><au>Ganguli, Deep</au><au>Hubinger, Evan</au><au>Schiefer, Nicholas</au><au>Kaplan, Jared</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Discovering Language Model Behaviors with Model-Written Evaluations</atitle><jtitle>arXiv.org</jtitle><date>2022-12-19</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>As language models (LMs) scale, they develop many novel behaviors, good and bad, exacerbating the need to evaluate how they behave. Prior work creates evaluations with crowdwork (which is time-consuming and expensive) or existing data sources (which are not always available). Here, we automatically generate evaluations with LMs. We explore approaches with varying amounts of human effort, from instructing LMs to write yes/no questions to making complex Winogender schemas with multiple stages of LM-based generation and filtering. Crowdworkers rate the examples as highly relevant and agree with 90-100% of labels, sometimes more so than corresponding human-written datasets. We generate 154 datasets and discover new cases of inverse scaling where LMs get worse with size. Larger LMs repeat back a dialog user's preferred answer ("sycophancy") and express greater desire to pursue concerning goals like resource acquisition and goal preservation. We also find some of the first examples of inverse scaling in RL from Human Feedback (RLHF), where more RLHF makes LMs worse. For example, RLHF makes LMs express stronger political views (on gun rights and immigration) and a greater desire to avoid shut down. Overall, LM-written evaluations are high-quality and let us quickly discover many novel LM behaviors.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2755992596
source Free E- Journals
subjects Datasets
Shutdowns
title Discovering Language Model Behaviors with Model-Written Evaluations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A37%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Discovering%20Language%20Model%20Behaviors%20with%20Model-Written%20Evaluations&rft.jtitle=arXiv.org&rft.au=Perez,%20Ethan&rft.date=2022-12-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2755992596%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2755992596&rft_id=info:pmid/&rfr_iscdi=true