A first order reliability method based on hybrid conjugate approach with adaptive Barzilai–Borwein steps

In the first order reliability method (FORM), the Hasofer–Lind and Rackwitz–Flessler (HL–RF) algorithm sometimes encounters numerical instability problems due to the highly nonlinear limit state function (LSF). In this paper, an improved HL–RF algorithm introducing the hybrid conjugate gradient meth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2022-11, Vol.401, p.115670, Article 115670
Hauptverfasser: Wang, Xiaoping, Zhao, Wei, Chen, Yangyang, Li, Xueyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 115670
container_title Computer methods in applied mechanics and engineering
container_volume 401
creator Wang, Xiaoping
Zhao, Wei
Chen, Yangyang
Li, Xueyan
description In the first order reliability method (FORM), the Hasofer–Lind and Rackwitz–Flessler (HL–RF) algorithm sometimes encounters numerical instability problems due to the highly nonlinear limit state function (LSF). In this paper, an improved HL–RF algorithm introducing the hybrid conjugate gradient method with adaptive Barzilai–Borwein step sizes is developed to enhance the robustness and efficiency of the original HL–RF method. The proposed algorithm is composed of two stages, the steepest descent method is performed in the first stage to move to the vicinity of the most probable failure point (MPFP) and provide a good initial location for the second stage. Along with the hybrid conjugate search direction defined by the descent direction of the non-differential merit function, the second stage quantizes the adaptive Barzilai–Borwein step sizes to accelerate the process of locating the final MPFP under the nonmonotone line search rule. Eight illustrative examples with nonlinear LSFs are analyzed in detail to validate the performance of the proposed algorithm compared with other first order reliability methods. The results indicate that the proposed algorithm is not only computationally efficient but also robust in terms of convergence, especially for those problems with super nonlinear LSFs and with nonlinear LSFs involving high-frequency noise terms. •Non-differential merit function is chosen to monitor the iterations.•Novel hybrid conjugate search direction of the most probable point is defined.•Global Barzilai–Borwein steps accelerate the convergence speed.•Optimal initial step size is set to be 1 in the nonmonotone line search stage.•Problems with high nonlinearities and high-frequency noises are solved efficiently.
doi_str_mv 10.1016/j.cma.2022.115670
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2755905660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782522006259</els_id><sourcerecordid>2755905660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-d73bf19f42892764201d5f8a62c82a6ca2f52137fadbd3d947396d8103f823193</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhS0EEqXwAGyWmBNsJ04cMbUVf1IlFpgtxz_EURoH221VJt6BN-RJSBVm7nKXc-495wPgGqMUI1zctqnciJQgQlKMaVGiEzDDrKwSgjN2CmYI5TQpGaHn4CKEFo3DMJmBdgGN9SFC55X20OvOitp2Nh7gRsfGKViLoBV0PWwOtbcKSte323cRNRTD4J2QDdzb2EChxBDtTsOl8J-2E_bn63vp_F7bHoaoh3AJzozogr7623Pw9nD_unpK1i-Pz6vFOpEZoTFRZVYbXJmcsIqURU4QVtQwURDJiCikIIaOpUojVK0yVeVlVhWKYZQZRjJcZXNwM90d031sdYi8dVvfjy85KSmtEC0KNKrwpJLeheC14YO3G-EPHCN-RMpbPiLlR6R8Qjp67iaPHuPvrPY8SKt7qZX1WkaunP3H_Qt1Kn-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2755905660</pqid></control><display><type>article</type><title>A first order reliability method based on hybrid conjugate approach with adaptive Barzilai–Borwein steps</title><source>Elsevier ScienceDirect Journals</source><creator>Wang, Xiaoping ; Zhao, Wei ; Chen, Yangyang ; Li, Xueyan</creator><creatorcontrib>Wang, Xiaoping ; Zhao, Wei ; Chen, Yangyang ; Li, Xueyan</creatorcontrib><description>In the first order reliability method (FORM), the Hasofer–Lind and Rackwitz–Flessler (HL–RF) algorithm sometimes encounters numerical instability problems due to the highly nonlinear limit state function (LSF). In this paper, an improved HL–RF algorithm introducing the hybrid conjugate gradient method with adaptive Barzilai–Borwein step sizes is developed to enhance the robustness and efficiency of the original HL–RF method. The proposed algorithm is composed of two stages, the steepest descent method is performed in the first stage to move to the vicinity of the most probable failure point (MPFP) and provide a good initial location for the second stage. Along with the hybrid conjugate search direction defined by the descent direction of the non-differential merit function, the second stage quantizes the adaptive Barzilai–Borwein step sizes to accelerate the process of locating the final MPFP under the nonmonotone line search rule. Eight illustrative examples with nonlinear LSFs are analyzed in detail to validate the performance of the proposed algorithm compared with other first order reliability methods. The results indicate that the proposed algorithm is not only computationally efficient but also robust in terms of convergence, especially for those problems with super nonlinear LSFs and with nonlinear LSFs involving high-frequency noise terms. •Non-differential merit function is chosen to monitor the iterations.•Novel hybrid conjugate search direction of the most probable point is defined.•Global Barzilai–Borwein steps accelerate the convergence speed.•Optimal initial step size is set to be 1 in the nonmonotone line search stage.•Problems with high nonlinearities and high-frequency noises are solved efficiently.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2022.115670</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Barzilai–Borwein step size ; Conjugate gradient method ; First order reliability method ; Limit states ; Most probable failure point ; Reliability ; Reliability index ; Robustness (mathematics) ; Steepest descent method</subject><ispartof>Computer methods in applied mechanics and engineering, 2022-11, Vol.401, p.115670, Article 115670</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright Elsevier BV Nov 1, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-d73bf19f42892764201d5f8a62c82a6ca2f52137fadbd3d947396d8103f823193</citedby><cites>FETCH-LOGICAL-c325t-d73bf19f42892764201d5f8a62c82a6ca2f52137fadbd3d947396d8103f823193</cites><orcidid>0000-0003-1339-8145</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045782522006259$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Wang, Xiaoping</creatorcontrib><creatorcontrib>Zhao, Wei</creatorcontrib><creatorcontrib>Chen, Yangyang</creatorcontrib><creatorcontrib>Li, Xueyan</creatorcontrib><title>A first order reliability method based on hybrid conjugate approach with adaptive Barzilai–Borwein steps</title><title>Computer methods in applied mechanics and engineering</title><description>In the first order reliability method (FORM), the Hasofer–Lind and Rackwitz–Flessler (HL–RF) algorithm sometimes encounters numerical instability problems due to the highly nonlinear limit state function (LSF). In this paper, an improved HL–RF algorithm introducing the hybrid conjugate gradient method with adaptive Barzilai–Borwein step sizes is developed to enhance the robustness and efficiency of the original HL–RF method. The proposed algorithm is composed of two stages, the steepest descent method is performed in the first stage to move to the vicinity of the most probable failure point (MPFP) and provide a good initial location for the second stage. Along with the hybrid conjugate search direction defined by the descent direction of the non-differential merit function, the second stage quantizes the adaptive Barzilai–Borwein step sizes to accelerate the process of locating the final MPFP under the nonmonotone line search rule. Eight illustrative examples with nonlinear LSFs are analyzed in detail to validate the performance of the proposed algorithm compared with other first order reliability methods. The results indicate that the proposed algorithm is not only computationally efficient but also robust in terms of convergence, especially for those problems with super nonlinear LSFs and with nonlinear LSFs involving high-frequency noise terms. •Non-differential merit function is chosen to monitor the iterations.•Novel hybrid conjugate search direction of the most probable point is defined.•Global Barzilai–Borwein steps accelerate the convergence speed.•Optimal initial step size is set to be 1 in the nonmonotone line search stage.•Problems with high nonlinearities and high-frequency noises are solved efficiently.</description><subject>Algorithms</subject><subject>Barzilai–Borwein step size</subject><subject>Conjugate gradient method</subject><subject>First order reliability method</subject><subject>Limit states</subject><subject>Most probable failure point</subject><subject>Reliability</subject><subject>Reliability index</subject><subject>Robustness (mathematics)</subject><subject>Steepest descent method</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAUhS0EEqXwAGyWmBNsJ04cMbUVf1IlFpgtxz_EURoH221VJt6BN-RJSBVm7nKXc-495wPgGqMUI1zctqnciJQgQlKMaVGiEzDDrKwSgjN2CmYI5TQpGaHn4CKEFo3DMJmBdgGN9SFC55X20OvOitp2Nh7gRsfGKViLoBV0PWwOtbcKSte323cRNRTD4J2QDdzb2EChxBDtTsOl8J-2E_bn63vp_F7bHoaoh3AJzozogr7623Pw9nD_unpK1i-Pz6vFOpEZoTFRZVYbXJmcsIqURU4QVtQwURDJiCikIIaOpUojVK0yVeVlVhWKYZQZRjJcZXNwM90d031sdYi8dVvfjy85KSmtEC0KNKrwpJLeheC14YO3G-EPHCN-RMpbPiLlR6R8Qjp67iaPHuPvrPY8SKt7qZX1WkaunP3H_Qt1Kn-w</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Wang, Xiaoping</creator><creator>Zhao, Wei</creator><creator>Chen, Yangyang</creator><creator>Li, Xueyan</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1339-8145</orcidid></search><sort><creationdate>20221101</creationdate><title>A first order reliability method based on hybrid conjugate approach with adaptive Barzilai–Borwein steps</title><author>Wang, Xiaoping ; Zhao, Wei ; Chen, Yangyang ; Li, Xueyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-d73bf19f42892764201d5f8a62c82a6ca2f52137fadbd3d947396d8103f823193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Barzilai–Borwein step size</topic><topic>Conjugate gradient method</topic><topic>First order reliability method</topic><topic>Limit states</topic><topic>Most probable failure point</topic><topic>Reliability</topic><topic>Reliability index</topic><topic>Robustness (mathematics)</topic><topic>Steepest descent method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiaoping</creatorcontrib><creatorcontrib>Zhao, Wei</creatorcontrib><creatorcontrib>Chen, Yangyang</creatorcontrib><creatorcontrib>Li, Xueyan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xiaoping</au><au>Zhao, Wei</au><au>Chen, Yangyang</au><au>Li, Xueyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A first order reliability method based on hybrid conjugate approach with adaptive Barzilai–Borwein steps</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2022-11-01</date><risdate>2022</risdate><volume>401</volume><spage>115670</spage><pages>115670-</pages><artnum>115670</artnum><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>In the first order reliability method (FORM), the Hasofer–Lind and Rackwitz–Flessler (HL–RF) algorithm sometimes encounters numerical instability problems due to the highly nonlinear limit state function (LSF). In this paper, an improved HL–RF algorithm introducing the hybrid conjugate gradient method with adaptive Barzilai–Borwein step sizes is developed to enhance the robustness and efficiency of the original HL–RF method. The proposed algorithm is composed of two stages, the steepest descent method is performed in the first stage to move to the vicinity of the most probable failure point (MPFP) and provide a good initial location for the second stage. Along with the hybrid conjugate search direction defined by the descent direction of the non-differential merit function, the second stage quantizes the adaptive Barzilai–Borwein step sizes to accelerate the process of locating the final MPFP under the nonmonotone line search rule. Eight illustrative examples with nonlinear LSFs are analyzed in detail to validate the performance of the proposed algorithm compared with other first order reliability methods. The results indicate that the proposed algorithm is not only computationally efficient but also robust in terms of convergence, especially for those problems with super nonlinear LSFs and with nonlinear LSFs involving high-frequency noise terms. •Non-differential merit function is chosen to monitor the iterations.•Novel hybrid conjugate search direction of the most probable point is defined.•Global Barzilai–Borwein steps accelerate the convergence speed.•Optimal initial step size is set to be 1 in the nonmonotone line search stage.•Problems with high nonlinearities and high-frequency noises are solved efficiently.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2022.115670</doi><orcidid>https://orcid.org/0000-0003-1339-8145</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2022-11, Vol.401, p.115670, Article 115670
issn 0045-7825
1879-2138
language eng
recordid cdi_proquest_journals_2755905660
source Elsevier ScienceDirect Journals
subjects Algorithms
Barzilai–Borwein step size
Conjugate gradient method
First order reliability method
Limit states
Most probable failure point
Reliability
Reliability index
Robustness (mathematics)
Steepest descent method
title A first order reliability method based on hybrid conjugate approach with adaptive Barzilai–Borwein steps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A47%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20first%20order%20reliability%20method%20based%20on%20hybrid%20conjugate%20approach%20with%20adaptive%20Barzilai%E2%80%93Borwein%20steps&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Wang,%20Xiaoping&rft.date=2022-11-01&rft.volume=401&rft.spage=115670&rft.pages=115670-&rft.artnum=115670&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2022.115670&rft_dat=%3Cproquest_cross%3E2755905660%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2755905660&rft_id=info:pmid/&rft_els_id=S0045782522006259&rfr_iscdi=true